Answer:
its cementation i got it correct
Explanation:
Answer:
0.0133A
Explanation:
Since we have two sections, for the Inductor region there would be a current
. In the case of resistance 2, it will cross a current
Defined this we proceed to obtain our equations,
For
,


For
,


The current in the entire battery is equivalent to,


Our values are,




Replacing in the current for t= 0.4m/s



Answer:
The mass of the object involved and the value of the gravitational acceleration
Explanation:
- Gravitational potential energy is defined as the energy possessed by an object in a gravitational field due to its position with respect to the ground:

where m is the mass of the object, g is the gravitational acceleration and h is the heigth of the object with respect to the ground.
- Elastic potential energy is defined as the energy possessed by an elastic object and it is given as:

where k is the spring constant of the elastic object, while x is the compression/stretching of the spring with respect to the equilibrium position.
As we can see from the equations, both types of energy depends on the relative position of the object/end of the spring with respect to a certain reference position (h in the first formula, x in the second formula), but gravitational potential energy also depends on m (the mass) and g (the gravitational acceleration) while the elastic energy does not.
Answer:
a) R = ρ₀ L /π(r_b² - R_a²)
, b) ρ₀ = V / I π (r_b² - R_a²) / L
Explanation:
a) The resistance of a material is given by
R = ρ l / A
where ρ is the resistivity, l is the length and A is the area
the length is l = L and the resistivity is ρ = ρ₀
the area is the area of the cylindrical shell
A = π r_b² - π r_a²
A = π (r_b² - r_a²)
we substitute
R = ρ₀ L /π(r_b² - R_a²)
b) The potential difference is related to current and resistance by ohm's law
V = i R
we subsist the expression of resistance
V = I ρ₀ L /π (r_b² - R_a²)
ρ₀ = V / I π (r_b² - R_a²) / L