Answer:
Esterification reaction
Explanation:
When we have to go from an acid to an ester we can use the <u>esterification reaction</u>. On this reaction, an alcohol reacts with a carboxylic acid on acid medium to produce an ester and water. (See figure).
In this case, we need the <u>methyl ester</u>, therefore we have to choose the <u>appropriate alcohol</u>, so we have to use the <u>methanol</u> as reactive if we have to produce the methyl ester.
hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.
<em><u>pl</u></em><em><u>ease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainliest</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>f</u></em><em><u>ollow</u></em><em><u> me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
DNA replication takes place in the chromosome which is located in the nucleus of a cell.
Explanation:
Answer:
Explanation:
There are four quantum numbers:
Principal quantum number (n)
Azimuthal quantum number (l)
Magnetic quantum number (ml)
Spin quantum number (ms)
All these four quantum numbers gives complete information about an electron like its spin, shells, subshells and orbitals.
For example:
If l=3 than possible sets of quantum numbers are:
Azimuthal quantum number (l)
The azimuthal quantum number describe the shape of orbitals. Its value for s, p, d, f... are 0, 1, 2, 3. For l=3
(n-1)
4-1 = 3
it means principle quantum is 4 and electron is present in f subshell.
Magnetic quantum number (ml)
It describe the orientation of orbitals. Its values are -l to +l. For l=3 the ml will be -3 -2 -1 0 +1 +2 +3.
Spin quantum number (ms)
The spin quantum number tells the spin of electron either its clock wise (+1/2) or anti clock wise (-1/2).
If the electron is added in full empty orbital its spin will be +1/2 because it occupy full empty. If electron is already present and another electron is added then its spin will be -1/2.
Answer:
186.9Kelvin
Explanation:
The ideal gas law equation is PV
=
n
R
T
where
P is the pressure of the gas
V is the volume it occupies
n is the number of moles of gas present in the sample
R is the universal gas constant, equal to 0.0821
atm L
/mol K
T is the absolute temperature of the gas
Ensure units of the volume, pressure, and temperature of the gas correspond to R
( the universal gas constant, equal to 0.0821
atm L
/mol K
)
n
=
3.54moles
P= 1.57
V= 34.6
T=?
PV
=
n
R
T
PV/nR = T
1.57 x 34.6/3.54 x 0.0821
54.322/0.290634= 186.908620464= T
186.9Kelvin ( approximately to 1 decimal place)