Answer:
21883.75 Joules are required to melt the ice!
It is important to have the correct bond angles of the different atoms and the shape of the molecule due to following reasons;
Among other properties the polarity of compounds mainly depend upon the shape and bond angles of that particular compound. For example, considering the molecule of water, we already know that it is a polar molecule with partially positive hydrogen atoms and partially negative oxygen atoms and acts as universal solvent. The bond angle in water is about 104.5° with a Bent geometry. Unlike carbon dioxide (CO₂) which has Linear structure with bond angle 180° and is non-polar in nature therefore, the bent geometry in water is responsible for the polarity.
Other properties which can also be predicted by predicting the bond angles along with molecular geometries are;
i) Magnetism
ii) Phase of matter
iii) Color
iv) Reactivity
v) Biological activities <em>e.t.c</em>
<h3>
Answer:</h3>
Lead-205 (Pb-205)
<h3>
Explanation:</h3>
<u>We are given;</u>
We are supposed to identify its product after an alpha decay;
- Polonium-209 has a mass number of 209 and an atomic number of 84.
- When an element undergoes an alpha decay, the mass number decreases by 4 while the atomic number decreases by 2.
- Therefore, when Po-209 undergoes alpha decay it results to the formation of a product with a mass number of 205 and atomic number of 82.
- The product from this decay is Pb-205, because Pb-205 has a mass number of 205 and atomic number 82.
- The equation for the decay is;
²⁰⁹₈₄Po → ²⁰⁵₈₂Pb + ⁴₂He
- Note; An alpha particle is represented by a helium nucleus, ⁴₂He.
The pressure of the oxygen gas collected : 718 mmHg
<h3>Further explanation</h3>
Given
P tot = 748 mmHg
P water vapour = 30 mmHg
Required
P Oxygen
Solution
Dalton's law of partial pressures states that the total pressure of a mixture of gases is equal to the sum of the partial pressures of the component gases
Can be formulated:
P tot = P1 + P2 + P3 ....
The partial pressure is the pressure of each gas in a mixture
P tot = P H₂O + P Oxygen
P Oxygen = 748 mmHg - 30 mmHg
P Oxygen = 718 mmHg