First, we have a change in the velocity from 85 to 164 m/s in 10 sec.
Then, we calculate the <u>acceleration </u>as:

Hence we need to calculate the velocity of the space vehicle at t = 2 sec using the first equation of motion:

Then, using the second equation of motion to calculate the distance:


Answer:
0.71 m/s
Explanation:
We find the time it takes the stone to hit the water.
Using y = ut - 1/2gt² where y = height of bridge, u = initial speed of stone = 0 m/s, g = acceleration due to gravity = -9.8 m/s² (negative since it is directed downwards)and t = time it takes the stone to hit the water surface.
So, substituting the values of the variables into the equation, we have
y = ut - 1/2gt²
82.2 m = (0m/s)t - 1/2( -9.8 m/s²)t²
82.2 m = 0 + (4.9 m/s²)t²
82.2 m = (4.9 m/s²)t²
t² = 82.2 m/4.9 m/s²
t² = 16.78 s²
t = √16.78 s²
t = 4.1 s
This is also the time it takes the raft to move from 5.04 m before the bridge to 2.13 m before the bridge. So, the distance moved by the raft in time t = 4.1 s is 5.04 m - 2.13 m = 2.91 m.
Since speed = distance/time, the raft's speed v = 2.91 m/4.1 s = 0.71 m/s
Answer:
This a pure case of conflict of interests between the interest of the shareholders who are the original owners of the company and management's interest in earning much more,even if it at the expense of the shareholders.
Explanation:
Management is the entrusted with the day to day affairs of corporations.In carrying out their duty,they must have at the back of their minds that maximization of shareholder's wealth is of top priority.
However.some management teams in a bid to gain undue advantage set their remuneration below reasonable levels.
Ultimately,when this happens, their duty to watch over the investment of shareholders clashes with their interest for personal gains.
Check the attached file for the solution for this problem.
The diffusion coefficient of the gas is proportional to the average rate of thermal motion of the molecules.
the average velocity is inversely proportional to the square root of the molar mass
so
The gas diffusion rate is inversely proportional to the square root of its molecular weight.