Answer:
The answer is
<h2>1.38 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of liquid = 138 g
volume = 100 mL
The density of the liquid is

We have the final answer as
<h3>1.38 g/mL</h3>
Hope this helps you
Answer:
5.31x10⁻⁶ C
Explanation:
The cube is located 100 m altitude from the ground, so the superior face is at 100m and has E = 70 N/C, and the inferior face is at the ground with E = 130 N/C.
The electric field is perpendicular to the bottom and the top of the cube, so the total flux is the flux at the superior face plus the flux at the inferior face:
Фtotal = Ф100m + Фground
Where Ф = E*A*cos(α). α is the angle between the area vector and the field (180° at the topo and 0° at the bottom):
Фtotal = E100*A*cos(180°) + Eground*A*cos(0°)
Фtotal = 70A*(-1) + 130*A*1
Фtotal = 60A
By Gauss' Law, the flux is:
Фtotal = q/ε, where q is the charge, and ε is the permittivity constant in vacuum = 8.854x10⁻¹² C²/N.m²
A = 100mx100m = 10000 m²
q = 60*10000*8.854x10⁻¹²
q = 5.31x10⁻⁶ C
Answer:
Action given and reaction taken
Also known as
Newton's third law of motion
Explanation:
An action will be done such as bouncing a ball on the wall
- You throw the ball (Action)
- The ball bounces back (Reaction)
Hope this Helps
<span>The answer is B.They cannot produce enough heat to keep their bodies warm.
In order to survive, the alligators rely on warm weather, and they are most active when the environment is 82-92 degrees Fahrenheit. They can survive below or above this temperature range but they may spend that time struggling to stay warm or stay cool.
</span>