This separation technique is a 4-step procedure. First, add H₂SO₄ to the solution. Because of common ion effect, BaSO₄ will not react, only Mg(OH)₂.
Mg(OH)₂ + H₂SO₄ → MgSO₄ + 2 H₂O
The aqueous solution will now contain MgSO₄ and BaSO₄. Unlike BaSO₄, MgSO₄ is soluble in water. So, you filter out the solution. You can set aside the BaSO₄ on the filter paper. To retrieve Mg(OH)₂, add NaOH.
MgSO₄ + 2 NaOH = Mg(OH)₂ + Na₂SO₄
Na₂SO₄ is soluble in water, while Mg(OH)₂ is not. Filter this solution again. The Mg(OH)₂ is retrieved in solid form on the filter paper.
<span>Copper metal (Cu) reacts with silver nitrate (AgNO3) in aqueous solution to form Ag and Cu(NO3)2. An excess of AgNO3 is present. The balanced chemical equation is shown below.
Cu + 2AgNO3 ---> Cu(NO3)2 + 2Ag
The molar mass of Cu is 63.5 g/mol. The molar mass of Ag is 107.9 g/mol. What mass, in grams, of Ag is produced from reaction of 31.75 g of Cu?
26.95
107.9
215.91
431.82</span>
In the Southern Hemisphere this would be around June 20 and culminates on September 22.
Answer:
Scale Factor: 1 : 2
X = 11
Explanation:
3 / 3 = 1
6 / 3 = 2
The scale factor should be 1:2
So 'X' should be 11 since 5.5 * 2 = 11
<span>Heterogenous mixtures are those which are seperable by physical means. These mixtures do not have uniform properties throughout the substance. For example, blood is a heterogenous mixture because it can be seperated into its components via a physical change (centrifugation). </span>