Answer:
16/3 or 5.3
Step-by-step explanation:
150 miles = 4 hours
Find how long it takes to travel 50 miles(GCF between 150 and 200)
150/3 = 4/3
50 miles = 1 1/3 hours: multiply by 4 to get 200 miles
50 x 4 = 4/3 x 4/1
200 = 16/3
16/3 hours or 5.3
(3x19.95+23.5+124.95)1.05=
59.85+23.5+124.95 =208.3
208.3×1.05=218.715
Step-by-step explanation:
The function translation / transformation rules: f (x) + b shifts the function b units upward. f (x) − b shifts the function b units downward. f (x + b) shifts the function b units to the left
Answer:
![\text{The width of rectangle}=9x\text{ meters}](https://tex.z-dn.net/?f=%5Ctext%7BThe%20width%20of%20rectangle%7D%3D9x%5Ctext%7B%20meters%7D)
Step-by-step explanation:
We have been given that the rectangle has an area of
square meters and a length of
. We are asked to find the width of rectangle.
Since we know that area of a rectangle is width times length of the rectangle, so we can find width of our given rectangle by dividing given area by length of rectangle.
![\text{Area of rectangle}=\text{Width of rectangle *Length of the rectangle}](https://tex.z-dn.net/?f=%5Ctext%7BArea%20of%20rectangle%7D%3D%5Ctext%7BWidth%20of%20rectangle%20%2ALength%20of%20the%20rectangle%7D)
![\frac{\text{Area of rectangle}}{\text{Length of rectangle}}=\frac{\text{Width of rectangle *Length of the rectangle}}{\text{Legth of rectangle}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%7BArea%20of%20rectangle%7D%7D%7B%5Ctext%7BLength%20of%20rectangle%7D%7D%3D%5Cfrac%7B%5Ctext%7BWidth%20of%20rectangle%20%2ALength%20of%20the%20rectangle%7D%7D%7B%5Ctext%7BLegth%20of%20rectangle%7D%7D)
![\text{The width of rectangle}=\frac{\text{Area of rectangle}}{\text{Length of rectangle}}](https://tex.z-dn.net/?f=%5Ctext%7BThe%20width%20of%20rectangle%7D%3D%5Cfrac%7B%5Ctext%7BArea%20of%20rectangle%7D%7D%7B%5Ctext%7BLength%20of%20rectangle%7D%7D)
Upon substituting our given values in above formula we will get,
![\text{The width of rectangle}=\frac{18x^3\text{ meter}^2}{2x^2\text{ meters}}](https://tex.z-dn.net/?f=%5Ctext%7BThe%20width%20of%20rectangle%7D%3D%5Cfrac%7B18x%5E3%5Ctext%7B%20meter%7D%5E2%7D%7B2x%5E2%5Ctext%7B%20meters%7D%7D)
![\text{The width of rectangle}=\frac{9x^3\text{ meters}}{x^2}](https://tex.z-dn.net/?f=%5Ctext%7BThe%20width%20of%20rectangle%7D%3D%5Cfrac%7B9x%5E3%5Ctext%7B%20meters%7D%7D%7Bx%5E2%7D)
Using exponent rule for quotient
we will get,
![\text{The width of rectangle}=9x^{3-2}\text{ meters}](https://tex.z-dn.net/?f=%5Ctext%7BThe%20width%20of%20rectangle%7D%3D9x%5E%7B3-2%7D%5Ctext%7B%20meters%7D)
![\text{The width of rectangle}=9x^{1}\text{ meters}=9x\text{ meters}](https://tex.z-dn.net/?f=%5Ctext%7BThe%20width%20of%20rectangle%7D%3D9x%5E%7B1%7D%5Ctext%7B%20meters%7D%3D9x%5Ctext%7B%20meters%7D)
Therefore, width of our given rectangle will be 9x meters.
500= 120+20x, where x is weeks
Subtract 120 from both sides
380=20x
Divide both sides by 20
19=x
19 weeks*7 days per week= 133 days
Final answer: 133 days