True
Carbon monoxide is a primary pollutant which no odor results from incomplete combustion of fuel. The man sources are gasoline and burning of biomass.
Depending on the source of emission, pollutants can be classified into two groups that is primary and secondary pollutants.
A primary pollutant is emitted in the atmosphere directly from a source. It can be either natural sch as volcanic eruptions, sandstorms or man-made that is due to industrial and vehicle emissions. Examples of primary pollutants are nitrogen oxides, carbon monoxide and particulate matter.
Secondary pollutant is due to interactions between primary and secondary pollutants. These can be chemical or physical interactions. Examples are photo-chemical oxidants and secondary particulate matter.
Therefore, carbon monoxide CO is a primary pollutant.
Answer:
1.26 × 10^-8 M
Explanation:
We are given;
Number of moles of mercury (i) chloride as 0.000126 μmol
Volume is 100 mL
We are required to calculate the concentration of the solution.
We need to know that;
Concentration is also known as molarity is given by;
Molarity = Number of moles ÷ Volume
Number of moles = 1.26 × 10^-10 Moles
Volume = 0.01 L
Therefore;
Concentration = 1.26 × 10^-10 Moles ÷ 0.01 L
= 1.26 × 10^-8 M
Thus, the molarity of the solution is 1.26 × 10^-8 M
Answer: C)Anion, it would gain 2 electrons to satisfy the octet rule.
Explanation:
Electronic configuration represents the total number of electrons that a neutral element contains. We add all the superscripts to know the number of electrons in an atom.
The electrons are filled according to Afbau's rule in order of increasing energies and thus the electronic configuration of oxygen with 8 electrons is

The cation is formed by loss of electrons and anions are formed by gain of electrons.
In order to complete its octet and get stable, it gains 2 electrons and thus would form an anion.

Answer: acid dissociation constant Ka= 2.00×10^-7
Explanation:
For the reaction
HA + H20. ----> H3O+ A-
Initially: C. 0. 0
After : C-Cx. Cx. Cx
Ka= [H3O+][A-]/[HA]
Ka= Cx × Cx/C-Cx
Ka= C²X²/C(1-x)
Ka= Cx²/1-x
Where x is degree of dissociation = 0.1% = 0.001 and c is the concentration =0.2
Ka= 0.2(0.001²)/(1-0.001)
Ka= 2.00×10^-7
Therefore the dissociation constant is
2.00×10^-7
Answer:
Heat
Explanation:
Temperature is the average thermal energy (or heat) in a substance. Sound isn't really related, thermometers measure temperature, and chemical reactions can produce heat, but none of those are measured by temperature.