due to there reactive rate?
Answer: C
Explanation:
Some poly nuclear aromatic hydrocarbons are not carcinogenic in themselves. However, when these are made to interact with living cells, enzymes in the cells could convert the polynuclear aromatic hydrocarbon into a carcinogenic material such as benzo-[a]-pyrene. This can now interact adversely with the deoxyribonucleic acid of living cells leading to genetic mutation, that is, irreversible changes in the genes of organisms.
Answer:
- The first equation, <em>a. PV = nRT</em>, <u>is not</u> <em>a valid statement of the ideal gas law.</em>
Explanation:
The basic expression for the<em> ideal gas law</em> is:
.......... [Equation 1]
Where:
- n is the number of moles of the gas
- V is the volume occupied by the gas
- p is the pressure exerted by the gas molecules
- T is the temperature in absolute scale (Kelvin)
- R is the Universal gas constant (0.0821 atm-liter /K-mol or the equivalents in other units)
You can perform different algebraic operations to obtain equivalent equations:
<u>Choice b) Divide equation 1 by T and you get</u>:
- pV / T = nR, which is the choice b. from your list.
<u>Choice c) Divide equation 1 by n × V and you get</u>:
- p/n = RT / V, which is the choice c. from your list.
<u>Choice d) Divide equation 1 n × T and you get</u>:
- pV / (nT) = R, which is the choice d. from your list.
The choice a. p = nRTV states that p and V are in direct relation, when the ideal gas law states that p and V are inversely related, so that equation is wrong.
<u>Conclusion: </u>the choice a, p = nRTV, is not a statement of the ideal gas law.
Answer:
Matter cannot be created or destroyed in chemical reactions. This is the law of conservation of mass. In every chemical reaction, the same mass of matter must end up in the products as started in the reactants. Balanced chemical equations show that mass is conserved in chemical reactions.
Hope this helps! (: