1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natka813 [3]
3 years ago
10

True or false? If two triangles are congruent, then they can be moved so that

Mathematics
2 answers:
Genrish500 [490]3 years ago
5 0

Answer:

True

Step-by-step explanation:

Elena-2011 [213]3 years ago
4 0

Answer:

This is true.

Congruent triangles have the same shape and the same size. So, you can position them so that one is superimposed (line up perfectly) on the other.

You might be interested in
When 3x^2-12x-7 is written in the form of a (x-h)^2+k, what is the value of a,h, and k?
slavikrds [6]
A=2,h=5,k=0 and the vertex,which is (h,k) is vertex (-5,0)
3 0
3 years ago
The Pythagorean Theorem ONLY works on which triangle?
ioda

Answer:

right angle ( right )

Step-by-step explanation:

Pythagoras' theorem only works for right-angled triangles, so you can use it to test whether a triangle has a right angle or not. In the triangle above, if a 2 < b 2 + c 2 the angle is acute.

5 0
3 years ago
Read 2 more answers
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
(a 3 - 2a + 5) - (4a 3 - 5a 2 + a - 2)
Andreas93 [3]

Answer:

- 3a³ + 5a² - 3a + 7

Step-by-step explanation:

Given

(a³ - 2a + 5) - (4a³ - 5a² + a - 2)

Distribute both parenthesis noting the second is distributed by - 1

= a³ - 2a + 5 - 4a³ + 5a² - a + 2 ← collect like terms

= (a³ - 4a³ ) + 5a² + (- 2a - a) + (5 + 2)

= - 3a³ + 5a² - 3a + 7

3 0
3 years ago
1 hundredth is how many times greater than 1 thousand?
Paladinen [302]
10 times larger than a thousand. Also one decimal place larger
7 0
3 years ago
Other questions:
  • WILL GIVE BRAINLEST
    9·1 answer
  • Which of the following statements about EnergyStar washing machines and dryers is false?
    11·1 answer
  • The product of -2 and a number minus six is greater than -18
    5·1 answer
  • PLEASE HELP! An angle's measure is equal to 24 less than its complement. Find the measure of the angle.
    9·1 answer
  • -6x – 2y-z=-17<br> 5x + y - 6z = 19<br> -4x - 6y-6z =-20<br> solve for x, y, and z
    14·1 answer
  • Please Help. WILL GIVE BRAINLIEST!!!
    12·2 answers
  • What is the maximum amount of money that an employee under 50 years old can put into a 403(b) or 401(k) in 2018?
    10·1 answer
  • The data represented by the following stem-and-leaf plot range from to 2|578 3|24 4|129 5|03 A. 28 50 C. 25, 50 O 25 53
    5·1 answer
  • 9<br> Check:<br> 6,350<br> - 2,460
    10·1 answer
  • Solve -4x – 8y = -48<br> 8x + 3y = -34.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!