1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oliga [24]
3 years ago
11

A triangle can be formed with side lengths 2in, 3in and 6 in?true or false?​

Mathematics
2 answers:
Aleks04 [339]3 years ago
4 0

Answer:

No, a triangle cannot be constructed with sides of 2 in., 3 in., and 6 in.

For three line segments to be able to form any triangle you must be able to take any two sides, add their length and this sum be greater than the remaining side.

2

in.

+

3

in.

=

5

in.

5

in.

<

6

in.

For a triangle with sides 3 in., 4 in. and 5 in. which can form a triangle:

3 + 4 = 7 which is greater than 5

3 + 5 = 8 which is greater than 4

4 + 5 = 9 which is greater than 3

Step-by-step explanation:

Alecsey [184]3 years ago
4 0

answer would be false

You might be interested in
Really need need help on this please
Alexxx [7]

Answer:

\frac{7}{2}

Step-by-step explanation:

\frac{12-3y}{2} + y (\frac{2y-4}{y})

we substitute the value of "y" in the equation:

\frac{12-3(3)}{2} + 3 (\frac{2(3)-4}{3})\\\\\frac{12-9}{2} + 3 (\frac{6-4}{3})\\\\\frac{3}{2} + 3 (\frac{2}{3})\\\\\frac{3}{2} + 2\\\\\frac{7}{2}

3 0
3 years ago
“encontrar la integral indefinida y verificar el resultado mediante derivación”
Oliga [24]

I=\displaystyle\int\frac x{(1-x^2)^3}\,\mathrm dx

Haz la sustitución:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{y^3}=\frac1{4y^2}+C=\frac1{4(1-x^2)^2}+C

Para confirmar el resultado:

\dfrac{\mathrm dI}{\mathrm dx}=\dfrac14\left(-\dfrac{2(-2x)}{(1-x^2)^3}\right)=\dfrac x{(1-x^2)^3}

I=\displaystyle\int\frac{x^2}{(1+x^3)^2}\,\mathrm dx

Sustituye:

y=1+x^3\implies\mathrm dy=3x^2\,\mathrm dx

\implies I=\displaystyle\frac13\int\frac{\mathrm dy}{y^2}=-\frac1{3y}+C=-\frac1{3(1+x^3)}+C

(Te dejaré confirmar por ti mismo.)

I=\displaystyle\int\frac x{\sqrt{1-x^2}}\,\mathrm dx

Sustituye:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{\sqrt y}=-\frac12(2\sqrt y)+C=-\sqrt{1-x^2}+C

I=\displaystyle\int\left(1+\frac1t\right)^3\frac{\mathrm dt}{t^2}

Sustituye:

u=1+\dfrac1t\implies\mathrm du=-\dfrac{\mathrm dt}{t^2}

\implies I=-\displaystyle\int u^3\,\mathrm du=-\frac{u^4}4+C=-\frac{\left(1+\frac1t\right)^4}4+C

Podemos hacer que esto se vea un poco mejor:

\left(1+\dfrac1t\right)^4=\left(\dfrac{t+1}t\right)^4=\dfrac{(t+1)^4}{t^4}

\implies I=-\dfrac{(t+1)^4}{4t^4}+C

4 0
3 years ago
The table represents an exponential function.
polet [3.4K]

Answer:

N

Step-by-step explanation:

7 0
3 years ago
Q.2. Separate the digits of the number "893451" as per National and
LuckyWell [14K]

Answer:

imm a bit sorry I could only answer the international one as the national is equal to international place value system

Step-by-step explanation:

eight hundred ninety three thousand four hundred fifty one

hth tth th h t o

8 9 3 4 5 1

I hope you understand

8 0
3 years ago
If adult grey whales weigh an average of 50 - 55 tons, about how many pounds does an adult grey whale weigh? (A ton equals 2000
LUCKY_DIMON [66]

Answer:

100000

Step-by-step explanation:

First multiplt the given njmber with 2000 and subrat total number givem

7 0
2 years ago
Read 2 more answers
Other questions:
  • A transit company operates commuter trains to help people get to the city each day. Each train travels on a straight route to an
    14·1 answer
  • Solve the equation z=2x+3 for x
    14·1 answer
  • (15, 0 ) (3,−3)
    10·2 answers
  • If 150g of sugar is used for 5 cakes<br> How much is used for 7 cakes?:)
    15·2 answers
  • Can someone help me with several questions?
    15·1 answer
  • Use the distributive property -7(-2x+u-2)
    6·2 answers
  • Divide using long division.<br> (9p2 + 8p3 + 12) ÷ (p + 1)
    8·2 answers
  • Plz help 20 points
    9·2 answers
  • 1 point<br> Find the length/distance between points (1,3) and (3,15).
    15·1 answer
  • Thank you for your help. The question is in the screenshot
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!