Answer:
the moment of inertia with the arms extended is Io and when the arms are lowered the moment
I₀/I > 1 ⇒ w > w₀
Explanation:
The angular momentum is conserved if the external torques in the system are zero, this is achieved because the friction with the ice is very small,
L₀ = L_f
I₀ w₀ = I w
w =
w₀
where we see that the angular velocity changes according to the relation of the angular moments, if we approximate the body as a cylinder with two point charges, weight of the arms
I₀ = I_cylinder + 2 m r²
where r is the distance from the center of mass of the arms to the axis of rotation, the moment of inertia of the cylinder does not change, therefore changing the distance of the arms changes the moment of inertia.
If we say that the moment of inertia with the arms extended is Io and when the arms are lowered the moment will be
I <I₀
I₀/I > 1 ⇒ w > w₀
therefore the angular velocity (rotations) must increase
in this way the skater can adjust his spin speed to the musician.
Explanation:
Given that,
Mass of Nichrome, m = 0.5 g
The resistance of the wire, R = 0.673 ohms
Resistivity of the nichrome wire, 
Density, 
(A) The length of the wire is given by using the definition of resistance as :
Volume,

Area,
....(1)

(b) Equation (1) becomes :

Hence, this is the required solution.
In a moving car the outside looks to be moving. however if viewed from the outside, the car appears to be moving. so motion is relative to the person observing.
Answer:
4.8mph
Explanation:
Speed= Distance/time
Speed= 26.2/5.5
= 4.76mph
( To the nearest tenth ) = 4.8mph