1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ahat [919]
3 years ago
6

Having landed on a newly discovered planet, an astronaut sets up a simple pendulum of length 1.38 m and finds that it makes 441

complete oscillations in 1090 s. the amplitude of the oscillations is very small compared to the pendulum's length. what is the gravitational acceleration on the surface of this planet? answer in units of m/s 2 .
Physics
1 answer:
Tasya [4]3 years ago
3 0
The period of a simple pendulum is given by:
T=2 \pi  \sqrt{ \frac{L}{g} }
where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:
g= \frac{4 \pi^2}{T^2}L (1)

We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.

We know it makes N=441 oscillations in t=1090 s, therefore its frequency is
f= \frac{N}{t}= \frac{441}{1090 s}=0.40 Hz
And its period is the reciprocal of its frequency:
T= \frac{1}{f}= \frac{1}{0.40 Hz}=2.47 s

So now we can use eq.(1) to find the gravitational acceleration of the planet:
g= \frac{4 \pi^2}{T^2}L =  \frac{4 \pi^2}{(2.47 s)^2} (1.38 m) =8.92 m/s^2
You might be interested in
How old is the moon!
wolverine [178]

4.53 billion years

1.653 trillion days

39.68 trillion hours

2.381 × 10^15 minutes

1.429 × 10^17 seconds

5 0
3 years ago
Read 2 more answers
Earth's surface receives about twice as much energy from the atmosphere than from the sun as a result of ____.
Oxana [17]
I think the answer is “greenhouse effect”
5 0
3 years ago
Which item could you use in place of an ammeter to demonstrate that a
love history [14]

Answer:

the answer is D

Explanation:

6 0
2 years ago
A projectile is launched horizontally from a 20-m tall edifice with a vox of 25 m/s. How long will it take for the projectile to
NISA [10]

Answer:

a) First let's analyze the vertical problem:

When the projectile is on the air, the only vertical force acting on it is the gravitational force, then the acceleration of the projectile is the gravitational acceleration, and we can write this as:

a(t) = -9.8m/s^2

To get the vertical velocity we need to integrate over time to get:

v(t) = (-9.8m/s^2)*t + v0

where v0 is the initial vertical velocity because the object is thrown horizontally, we do not have any initial vertical velocity, then v0 = 0m/s

v(t) = (-9.8m/s^2)*t

To get the vertical position equation we need to integrate over time again, to get:

p(t) = (1/2)*(-9.8m/s^2)*t^2 + p0

where p0 is the initial position, in this case is the height of the edifice, 20m

then:

p(t) = (-4.9m/s^2)*t^2+ 20m

The projectile will hit the ground when p(t) = 0m, then we need to solve:

(-4.9m/s^2)*t^2+ 20m = 0m

20m = (4.9m/s^2)*t^2

√(20m/ (4.9m/s^2)) = t = 2.02 seconds

The correct option is a.

b) The range will be the total horizontal distance traveled by the projectile, as we do not have any horizontal force, we know that the horizontal velocity is 25 m/s constant.

Now we can use the relationship:

distance = speed*time

We know that the projectile travels for 2.02 seconds, then the total distance that it travels is:

distance = 2.02s*25m/s = 50.5m

Here the correct option is a.

c) Again, the horizontal velocity never changes, is 25m/s constantly, then here the correct option is option b. 25m/s

d) Here we need to evaluate the velocity equation in t = 2.02 seconds, this is the velocity of the projectile when it hits the ground.

v(2.02s) =  (-9.8m/s^2)*2.02s = -19.796 m/s

The velocity is negative because it goes down, and it matches with option d, so I suppose that the correct option here is option d (because the sign depends on how you think the problem)

4 0
2 years ago
A steel ball and a wooden ball of the same diameter are released together from the top of a tower. In the absence of air resista
ella [17]

Answer:

False

Explanation:

The steel ball and the wooden ball do not have the same force acting on them because their masses are different. But, they have the same acceleration which is the acceleration due to gravity g = 9.8 m/s².

Using the equation of motion under freefall, s = ut +1/2gt². Since u = 0,

s = 1/2gt² ⇒ t = √(2s/g)

Since. s = height is the same for both objects, they land at the same time neglecting air resistance.

8 0
3 years ago
Other questions:
  • One airplane is approaching an airport from the north at 181 kn/hr. A second airplane approaches from the east at 278 km/hr. Fin
    6·1 answer
  • What happens to the saturation for when adding salt to water at room temperature
    11·1 answer
  • If the mass of an object on earth is 40 kilograms it’s mass on the moon is
    8·1 answer
  • What process modifies light waves to vibrate in a single plane
    12·1 answer
  • Ways that industry and agriculture use physical properties to separate substances
    13·1 answer
  • The pressure of a monatomic ideal gas is doubled, while the volume is cut in half. By what factor is the internal energy of the
    6·1 answer
  • A bullet has a mass of 8 grams and a muzzle velocity of 340m/sec. A baseball has a mass of 0.2kg and is thrown by the pitcher at
    13·1 answer
  • Un conductor se conecta en posición horizontal cargado positivamente con una densidad lineal de carga de 12mc/m ( 12 e-6 C)y a u
    15·1 answer
  • What is solution for displacement<br>​
    7·1 answer
  • If a system's internal energy increases by 250 kJ after the addition of375 kJ of energy as heat, what was the value ofthe work i
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!