Answer:
42KVA
Explanation:
Given data
High Voltage (HV)= 480V
Low Voltage (LV)= 277V
Fo find
Size of transformer=?
Solution
To find the size of transformer here we use the co-ratio.The Co-ratio is given as:
Co-Ratio= (HV - LV)/HV
where
HV is High Voltage
LV is Low Voltage
Now put the values we get
Co- Ratio=(480-277)/480=.42
So the size of transformer is 42KVA
Answer:
205 V
V
= 2.05 V
Explanation:
L = Inductance in Henries, (H) = 0.500 H
resistor is of 93 Ω so R = 93 Ω
The voltage across the inductor is

w = 500 rad/s
IwL = 11.0 V
Current:
I = 11.0 V / wL
= 11.0 V / 500 rad/s (0.500 H)
= 11.0 / 250
I = 0.044 A
Now
V
= IR
= (0.044 A) (93 Ω)
V
= 4.092 V
Deriving formula for voltage across the resistor
The derivative of sin is cos
V
= V
cos (wt)
Putting V
= 4.092 V and w = 500 rad/s
V
= V
cos (wt)
= (4.092 V) (cos(500 rad/s )t)
So the voltage across the resistor at 2.09 x 10-3 s is which means
t = 2.09 x 10⁻³
V
= (4.092 V) (cos (500 rads/s)(2.09 x 10⁻³s))
= (4.092 V) (cos (500 rads/s)(0.00209))
= (4.092 V) (cos(1.045))
= (4.092 V)(0.501902)
= 2.053783
V
= 2.05 V
Answer:
1) t=1.743 sec
2)Vo=61.388 m/sec
3)the x component of its velocity just be- fore it strikes the ground is the same as the initial velocity of the ball that is=61.388 m/sec
4)Vf=17.08 m/s
Explanation:
1)From second equation of motion we get
h=Vit+(1/2)gt^2
here in case(a): Vi=0 m/s,h=14.9m,,put these values in above equation to find the time the ball is in motion
14.9=(0)*t+(1/2)(9.8)t^2
t^2=14.9/4.9
t^2=3.040 sec
t=1.743 sec
2) s=Vo*t
Putting values we get
107=Vo*1.743
Vo=61.388 m/sec
3)the x component of its velocity just be- fore it strikes the ground is the same as the initial velocity of the ball that is=61.388 m/sec
4)From third equation of motion we know that
Vf^2-Vi^2=2gh
here Vi=0 m/s,h=14.9 m
Vf^2=Vi^2+2gh=0+2(9.8)(14.9)
Vf^2=292.04
Vf=17.08 m/s
Answer:
The mass of the rule is 56.41 g
Explanation:
Given;
mass of the object suspended at zero mark, m₁ = 200 g
pivot of the uniform meter rule = 22 cm
Total length of meter rule = 100 cm
0 22cm 100cm
-------------------------Δ------------------------------------
↓ ↓
200g m₂
Apply principle of moment
(200 g)(22 cm - 0) = m₂(100 cm - 22 cm)
(200 g)(22 cm) = m₂(78 cm)
m₂ = (200 g)(22 cm) / (78 cm)
m₂ = 56.41 g
Therefore, the mass of the rule is 56.41 g
Answer:
The banking angle is 23.84 degrees.
Explanation:
Given that,
Radius of the curve, r = 194 m
Speed of the car, v = 29 m/s
On the banked curve, the centripetal force is balanced by the force of friction such that,




So, the banking angle is 23.84 degrees. Hence, this is the required solution.