Answer:
(Example Person) has to push hard to get the skateboard started, but once it begins moving, it takes much less effort to keep it rolling over the smooth, flat pavement. In fact, if (Example Person) tries to stop the rolling skateboard, it may take as much effort to stop it as it did to start it rolling in the first place.
Explanation:
Hope this helps :)
Answer:
The acceleration motorcycle
a = 5.13 m / s²
Explanation:
Now to determine the acceleration of the motorcycle
Use the force to analysis motion
∑ F = m * a
∑ F = E - D - m*g * sin ( β ) = m * a
E = 3168 N
D = 230 N
β = 31.6 °
3168 N - 230 N - 286 kg * 9.8 m / s² * sin ( 31.6° ) = 286 kg * a
Now solve to a'
a = [ 3168 N - 230 N - 286 kg * 9.8 m / s² * sin ( 31.6° ) ] / (286 kg)
a = 5.13 m / s²
Answer:
Noble gas element
Explanation:
because Noble gas element can neither loose nor gain electrons
When the system is experiencing a uniformly accelerated motion, there are a set of equations to work from. In this case, work is energy which consist solely of kinetic energy. That is, 1/2*m*v2. First, let's find the final velocity.
a = (vf - v0)/t
2.6 = (vf - 0)/4
vf = 10.4 m/s
Then W = 1/2*(2100 kg)*(10.4 m/s)2
W = 113568 J = 113.57 kJ
Answer:
changing the magnetic field more rapidly
Explanation:
According to Faraday's law, whenever there is a change in the magnetic lines of force, it leads the production of induced emf. The magnitude of induced emf is proportional to to the rate of change of flux.
Hence if the magnetic field inside a loop of wire is changed rapidly, the magnitude of induced emf increases in accordance with Faraday's law of electromagnetic induction stated above when the magnetic field is changed more rapidly, hence the answer.