Answer:
the clown can be put on a sealion and the other clown can hold a lot of peole he help a clown that was tall and heivy
Explanation:
Answer:
Thrust due to fuel consumption must overcome gravitational force from the Earth to send the rocket up into space.
Explanation:
From the concept of Escape Velocity, derived from Newton's Law of Gravitation, definition of Work, Work-Energy Theorem and Principle of Energy Conservation, which is the minimum speed such that rocket can overcome gravitational forces exerted by the Earth, and according to the Tsiolkovski's Rocket Equation, which states that thrust done by the rocket is equal to the change in linear momentum of the rocket itself, we conclude that thrust due to fuel consumption must overcome gravitational force from the Earth to send the rocket up into space.
Answer:
I will explain the concept of magnetic field and how it can be calculated.
Explanation:
The formula for magnetic field at the center of a loop is given as
B = μ
I / 2R
where B is the magnetic field
R is the radius of the loop
I is the current
and μ
is the magnetic permeability of free space which is a constant 4π ×
newtons/ampere²
If the magnetic field at the center of the loop is 0, then μ
I = 0
I = 0 which means there will be no current flow in the loop.
The correct answer is A. 250N
Work is a product of force and distance.
That is, work done=force×distance
Therefore substituting for the values in the question:
500J=force×2m
force= 500Nm/2m=250N
another unit for work done is Nm as force as the SI unit of force is newtons and distance in meters
A) To calculate the charge of each coin, we must apply the expression of the Coulomb's Law:
F=K(q1xq2)/r²
F: The magnitud of the force between the charges. (F=2.0 N).
K: Constant of proporcionality of the Coulomb's Law (K=9x10^9 Nxm²/C²).
q1 and q2: Electrical charges.
r: The distance between the charges (r=1.35 m).
We have the values of F, K and r, so we can calculate q1xq2, because both<span> coins have identical charges:
</span>
q1xq2=(r²xF)/K
q1xq2=(1.35 m)²(2.0 N)/9x10^9 Nxm²/C²
q1xq2=3x10^-10 C
q1=q2=(<span>3x10^-10 C)/2
</span>Then, the charge of each coin, is:
<span>
q1=1.5x</span><span>10^-10 C
</span>q2=1.5x10^-10 C
B) <span>Would the force be classified as a force of attraction or repulsion?
</span>
It is a force of repulsion, because both coins have identical charges and both are postive. In others words, when two bodies have identical charges (positive charges or negative charges), the force is of repulsion.