From the given chemical equation we see that 43 kcal of
energy is needed for every 2 moles of NO. First let us calculate the moles of
NO with a molar mass of 30 g/mol.
moles NO = 112 g / (30 g/mol) = 3.73 mol
So the total heat absorbed is:
heat = (43 kcal / 2 mol) * 3.73 mol
<span>heat = 80.195 kcal</span>
Answer:

Explanation:
Hello,
In this case, given the 2.00 M solution, we can compute the moles of calcium chloride that reacted:

Then, since in one mole of calcium chloride, we find two moles of chloride ions (see subscript), we can compute the moles of chloride ions that were involved in the reaction as shown below:

Best regards.
Answer:
MM = 5,521.54 g/mol
Explanation:
To solve this, we need to use the expression for osmotic pressure which is the following:
π = MRT (1)
Where:
M: Concentration of the solution
R: gas constant (0.082 L atm/ mol K
T: temperature in K
25 °C in Kelvin is: 25 + 273.15 = 298.15 K
Now, we do not have the concentration of the solution, but we do have the mass. and the concentration can be expressed in terms of mass, molar mass and volume:
Concentration (M) is:
M = n/V (2)
and n (moles) is:
n = m/MM (3)
Therefore, if we replace (2) and (3) in (1) we have:
π = mRT/V*MM
Solving for MM we have:
MM = mRT/πV (4)
All we have to do now, is replace the given data and we should get the value of the molar mass:
MM = 6.143 * 0.082 * 298.15 / 0.1 * 0.272
MM = 150.1859 / 0.0272
<em>MM = 5,521.54 g/mol</em>
<em>This is the molar mass.</em>