Molar mass is the mass of 1 mol of substance.
Molar masses of compounds can be calculated by the sum of the products of molar masses of individual atoms by number of corresponding individual atoms.
Compound formula is C₉H₈O₄
the molar masses of the atoms making up the compound
C - 12 g/mol x 9 C = 108
H - 1 g/mol x 8 H = 8
O - 16 g/mol x 4 O = 64
therefore molar mass of aspirin = 108 + 8 + 64 = 180 g/mol
answer is 3.180
I would say because the respiratory system brings in the oxygen for the body and the circulatory system moves it throughout the body with the blood
Answer:
92.72 kJ
Explanation:
2 N₂ (g) + O₂ (g) —-> 2 N₂O
According to question , one mole of N₂O requires 163.2 kJ of heat
Molecular weight of N₂O = 44 gm
25 g N₂O = 25 / 44 mole
25 / 44 mole will require 163.2 x 25 / 44 kJ
= 92.72 kJ
The oxidation half-reaction occurs at one electrode (the anode), and the reduction half-reaction occurs at the other (the cathode). When the circuit is closed, electrons flow from the anodeto the cathode.
Answer:
The correct answer is : No, because there are 4 hydrogen atoms on the reactants side and 2 on the products side.
Explanation:
The given reaction equation is not balanced because:
- Number of hydrogen atoms on both sides are not equal that is 4 on reactants side and 2 on products side.
- Number of oxygen atoms on both sides are not equal that is 3 on reactants side and 2 on products side.
In a balanced chemical equation number of atoms of each elements are equal on both sides.
So, the balanced chemical equation will be: