Answer:
0.78 atm
Explanation:
Step 1:
Data obtained from the question. This includes:
Mass of CO2 = 5.6g
Volume (V) = 4L
Temperature (T) =300K
Pressure (P) =?
Step 2:
Determination of the number of mole of CO2.
This is illustrated below:
Mass of CO2 = 5.6g
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Number of mole CO2 =?
Number of mole = Mass/Molar Mass
Number of mole of CO2 = 5.6/44
Number of mole of CO2 = 0.127 mole
Step 3:
Determination of the pressure in the container.
The pressure in the container can be obtained by applying the ideal gas equation as follow:
PV = nRT
The gas constant (R) = 0.082atm.L/Kmol
The number of mole (n) = 0.127 mole
P x 4 = 0.127 x 0.082 x 300
Divide both side by 4
P = (0.127 x 0.082 x 300) /4
P = 0.78 atm
Therefore, the pressure in the container is
The answer is A. the solar ultraviolet ray breaks the molecule apart
Molarity is defined as the number of moles of solute in 1 L of solution
the mass of Ca(NO₃)₂ present - 8.50 g
therefore number of moles of Ca(NO₃)₂ - 8.50 g / 164 g/mol = 0.0518 mol
the volume of solution prepared is 755 mL
therefore if there are 0.0518 mol in 755 mL
then in 1000 mL the number of moles - 0.0518 mol / 0.755 L
molarity is therefore - 0.0686 M
410g Ag
2.3*10^24 atoms
1 molcule Ag- 6.02g*10^3
When pH=7, [H⁺] =10⁻⁷.
When pH=5, [H⁺]=10⁻⁵.
10⁻⁵/10⁻⁷ =10²=100
The level of hydrogen ions increased by factor 100.