To calculate how many photons are in a certain amount of energy (joules) we need to know how much energy is in one photon.
Start by using two equations:
Energy of a photon = Frequency * Planck's constant (6.626 * 10^(-34) J-s)
Speed of light (constant 3 * 10^8 m/s) = Frequency * Wavelength
Which means:
frequency = Speed of Light / Wavelength
So energy of a photon = (Speed of light * Planck's constant)/(Wavelength)
You may have seen this equation as E = hc/<span>λ</span>
We have a wavelength of 691 nm or 691 * 10^-9 meters
So we can plug in all of our knowns:
E = (6.626 * 10^(-34) J-s) * (3.00 * 10^8 m/s) / (691 * 10^-9 m) =
2.88 * 10^(-19) joules per photon
Now we have joules per photon, and the total number of joules (0.862 joules)
,so divide joules by joules per photon, and we have the number of photons:
0.862 J/ (2.88 * 10^(-19) J/photon) = 3.00 * 10^18 photons.
<span>There are divergent boundaries where the plates are moving away from each other, causing magma to rise up. The boiling lava is almost immediately cooled and forms new sea floor crust.</span>
Answer:
A) t = 22.5 min and B) t = 29.94 min
Explanation:
Initial concentration, [A]₀ = 100
Final concentration = 100 -75 = 25
Time = 45 min
A) First order reaction
ln[A] − ln[A]₀ = −kt
Solving for k;
ln[25] − ln[100] = - 45k
-1.386 = -45k
k = 0.0308 min-1
How long after its start will the reaction be 50% complete?
Initial concentration, [A]₀ = 100
Final concentration, [A] = 100 -50 = 50
Time = ?
ln[A] − ln[A]₀ = −kt
Solving for k;
ln[50] − ln[100] = - 0.0308 * t
-0.693 = -0.0308 * t
t = 22.5 min
B) Zero Order
[A] = [A]₀ − kt
Using the values from the initial reaction and solving for k, we have;
25 = 100 - k(45)
-75 = -45k
k = 1.67 M min-1
How long after its start will the reaction be 50% complete?
Initial concentration, [A]₀ = 100
Final concentration, [A] = 100 -50 = 50
Time = ?
[A] = [A]₀ − kt
50 = 100 - (1.67)t
-50 = - 1.67t
t = 29.94 min
The IUPAC name of NO is nitric oxide. It is one of the many oxides of nitrogen. It is a colorless gas under standard temperature and pressure. It found great application in the combustion of fossil fuels in power plants. This substance is produced naturally by lightning.
He knew he was in the desert when he saw the dust blowing and a cactus. /// He was trying to desert the field in which was dangerous.