First subtract 4 from both sides

then simplify

add -5 to both sides

since a variable shouldn't be negative the answer should be

(I prefer having the variable on the left side)
Answer:

Step-by-step explanation:




Answer:
Condition 1: y>0
Condition 2: x+y>-2
Step-by-step explanation:
We are told that we have a set of points in the Cartesian system (i.e. x-y coordinate), so we can define our point as:

We are given two conditions and we want to create a system of inequalities. Now, generally speaking, inequalities are expressions relating mathematical expressions through 'comparison' (i.e. less than, greater than, or less/greater and equal to) usually recognized by
,
,
and
, respectively.
So in our case let set up our inequalities.
Condition 1: the y-coordinate is positive
This can be mathematically translated as
(i.e.
is greater than 0, therefore positive)
Condition 2: the sum of the coordinates is more than -2
This can be mathematically translated as

(i.e. the summation of the two coordinates is greater than -2 but not equal to).
The system of inequalities described by the two conditions is:

Area= length * width
Therefore, you do 3*1/8
ie 3/8
idk if its right :/
Y = 3x^2 - 3x - 6 {the x^2 (x squared) makes it a quadratic formula, and I'm assuming this is what you meant...}
This is derived from:
y = ax^2 + bx + c
So, by using the 'sum and product' rule:
a × c = 3 × (-6) = -18
b = -3
Now, we find the 'sum' and the 'product' of these two numbers, where b is the 'sum' and a × c is the 'product':
The two numbers are: -6 and 3
Proof:
-6 × 3 = -18 {product}
-6 + 3 = -3 {sum}
Now, since a > 1, we divide a from the results
-6/a = -6/3 = -2
3/a = 3/3 = 1
We then implement these numbers into our equation:
(x - 2) × (x + 1) = 0 {derived from 3x^2 - 3x - 6 = 0}
To find x, we make x the subject of 0:
x - 2 = 0
OR
x + 1 = 0
Therefore:
x = 2
OR
x = -1
So the x-intercepts of the quadratic formula (or solutions to equation 3x^2 - 3x -6 = 0, to put it into your words) are 2 and -1.
We can check this by substituting the values for x:
Let's start with x = 2:
y = 3(2)^2 - 3(2) - 6
= 3(4) - 6 - 6
= 12 - 6 - 6
= 0 {so when x = 2, y = 0, which is correct}
For when x = -1:
y = 3(-1)^2 - 3(-1) - 6
= 3(1) + 3 - 6
= 3 + 3 - 6
= 0 {so when x = -1, y = 0, which is correct}