f(x) + g(x) = 5x - 3 - 2x + 7
= 3x + 4
Hope this helps! If you have any questions, feel free to ask.
Determined by the signs multiplication is × or using it or could be 2 numbers attached like this 2y but for deciding it's a ÷ or / but that is some of the signs
Grace would earn 7 Dollars and 4 cents in non-compounded interest. :)
Answer:
37.41~votes received so the answer is A
Step-by-step explanation:
100%-87
43%-x
100x=3741
÷100 ÷100
_________________
x=37.41
Hope this helps :D
After solving
we get ![2x\sqrt[5]{4}\sqrt[5]{x^3}\sqrt[5]{y^2}](https://tex.z-dn.net/?f=2x%5Csqrt%5B5%5D%7B4%7D%5Csqrt%5B5%5D%7Bx%5E3%7D%5Csqrt%5B5%5D%7By%5E2%7D)
Step-by-step explanation:
We need to solve ![\sqrt[5]{128x^8y^2}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B128x%5E8y%5E2%7D)
Applying the rule: ![\sqrt[a]{xy}=\sqrt[a]{x}.\sqrt[a]{y}](https://tex.z-dn.net/?f=%5Csqrt%5Ba%5D%7Bxy%7D%3D%5Csqrt%5Ba%5D%7Bx%7D.%5Csqrt%5Ba%5D%7By%7D)
![\sqrt[5]{128x^8y^2}\\=\sqrt[5]{128}\sqrt[5]{x^8}\sqrt[5]{y^2}\\We\,\,know\,\,that\,\,128=2\times2\times2\times2\times2\times2\times2=2^7\,\,or\,\,2^5.2^2\\=\sqrt[5]{2^5.2^2}\sqrt[5]{x^5.x^3}\sqrt[5]{y^2}\\=(2^5)^{\frac{1}{5}}\sqrt[5]{2^2}\sqrt[5]{x^5}\sqrt[5]{x^3}\sqrt[5]{y^2}\\=2x\sqrt[5]{4}\sqrt[5]{x^3}\sqrt[5]{y^2}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B128x%5E8y%5E2%7D%5C%5C%3D%5Csqrt%5B5%5D%7B128%7D%5Csqrt%5B5%5D%7Bx%5E8%7D%5Csqrt%5B5%5D%7By%5E2%7D%5C%5CWe%5C%2C%5C%2Cknow%5C%2C%5C%2Cthat%5C%2C%5C%2C128%3D2%5Ctimes2%5Ctimes2%5Ctimes2%5Ctimes2%5Ctimes2%5Ctimes2%3D2%5E7%5C%2C%5C%2Cor%5C%2C%5C%2C2%5E5.2%5E2%5C%5C%3D%5Csqrt%5B5%5D%7B2%5E5.2%5E2%7D%5Csqrt%5B5%5D%7Bx%5E5.x%5E3%7D%5Csqrt%5B5%5D%7By%5E2%7D%5C%5C%3D%282%5E5%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%7D%5Csqrt%5B5%5D%7B2%5E2%7D%5Csqrt%5B5%5D%7Bx%5E5%7D%5Csqrt%5B5%5D%7Bx%5E3%7D%5Csqrt%5B5%5D%7By%5E2%7D%5C%5C%3D2x%5Csqrt%5B5%5D%7B4%7D%5Csqrt%5B5%5D%7Bx%5E3%7D%5Csqrt%5B5%5D%7By%5E2%7D)
So, After solving
we get ![2x\sqrt[5]{4}\sqrt[5]{x^3}\sqrt[5]{y^2}](https://tex.z-dn.net/?f=2x%5Csqrt%5B5%5D%7B4%7D%5Csqrt%5B5%5D%7Bx%5E3%7D%5Csqrt%5B5%5D%7By%5E2%7D)
Keywords: Solving with Exponents
Learn more about Solving with Exponents at:
#learnwithBrainly