The answer is 3.3. and represents a decimal and tenths is the place value right after the decimal
An example of a trig function that includes multiple transformations and how it is different from the standard trig function is; As detailed below
<h3>
How to interpret trigonometric functions in transformations?</h3>
An example of a trigonometric function that includes multiple transformations is; f(x) = 3tan(x - 4) + 3
This is different from the standard function, f(x) = tan x because it has a vertical stretch of 3 units and a horizontal translation to the right by 4 units, and a vertical translation upwards by 3.
Another way to look at it is by;
Let us use the function f(x) = sin x.
Thus, the new function would be written as;
g(x) = sin (x - π/2), and this gives us;
g(x) = sin x cos π/2 - (cos x sin π/2) = -cos x
This will make a graph by shifting the graph of sin x π/2 units to the right side.
Now, shifting the graph of sin xπ/2 units to the left gives;
h(x) = sin (x + π/2/2)
Read more about Trigonometric Functions at; brainly.com/question/4437914
#SPJ1
<h3>
Answers:</h3>
- ST = 23
- RU = 8
- SV = 5
- SU = 10
====================================================
Explanation:
Focus on triangles SVT and UVT.
They are congruent triangles due to the fact that SV = VU and VT = VT. From there we can use the LL (leg leg) theorem for right triangles to prove them congruent.
Since the triangles are the same, just mirrored, this means ST = UT = 23.
-----------------------
Following similar reasoning as the previous section, we can prove triangle RVU = triangle RVS.
Therefore, RS = RU = 8
-----------------------
SV = VU = 5 because RT bisects SU.
Bisect means to cut in half. The two smaller pieces are equal.
-----------------------
SU = SV + VU = 5+5 = 10
Refer to the segment addition postulate.