1)Identify the atoms that are participating in a covalent bond.
2)Draw each atom by using its element symbol. The number of valence electrons is shown by placing up to two dots on each side of the element symbol, with each dot representing a single valence electron.
3)Predict the number of covalent bonds each atom will make using the octet rule.
4)Draw the bonding atoms next to each other, showing a single covalent bond as either a pair of dots or a line representing a shared valence electron pair. If the molecule forms a double or triple bond, use two or three lines to represent the shared electron pairs, respectively.
Answer : The amount of oxygen gas collected are, 0.217 mol
Explanation :
Using ideal gas equation :

where,
P = pressure of gas =
(1 atm = 760 torr)
V = volume of gas = 5 L
T = temperature of gas = 
n = number of moles of gas = ?
R = gas constant = 0.0821 L.atm/mol.K
Now put all the given values in the ideal gas equation, we get:


Thus, the amount of oxygen gas collected are, 0.217 mol
Answer:
Explanation:
Hi! :) You didn't post the statements, but the answer should be something about conduction. Hope this helps!
Answer:
The rusting of iron is spontaneous at low temperatures.
Explanation:
The given chemical reaction is:
4Fe(s) + 3O2(g) ----> 2Fe2O3(s) [rust]
The rusting of iron is a chemical reaction in which iron reacts with oxygen in presence of moisture and forms iron oxide.
This reaction takes place in a faster rate when there is low temperatures in the atmosphere.
When temperature is low, the moisture in the atmosphere is more and hence, rate of rusting is more.
Answer is: <span>an atomic radius.
</span>The atomic radius<span> of a </span>chemical element<span> is a measure of the size of its atom.
</span>The atomic radius varies with increasing atomic number, but usually increases because of increasing of number of electrons.
The atomic radius decreases across the periods because an increasing number of protons, because <span>greater attraction between the protons and electrons.</span>