Answer:
<u>84.00 kPa = 630.084 torr</u>
Formula for kPa to torr: For an approximate result, multiply the pressure value by 7.501. <em><u>84* 7.501</u></em>
<u>84.00 kPa = 0.831683168 atm</u>
Formula for kPa to atm: for an approximate result, divide the pressure value by 101. <em><u>84/101</u></em>
First, we will get the "n", the number of half lives, it is the elapsed time over the half life. In the problem, the time is measured in days, so we have
6/2 = 3
to get the ending amount of radioactive sample, we have
32g x (1/2)³ = 4 grams of radioactive sample ⇒ the amount left after 6 days
Answer:
Triphorphorus Pentanitride
Explanation:
since there are three phosphorus use the prefix tri-, since there are five nitrogen use the prefix penta. tri=3, penta=5. then add a suffix -ide to the end of nitrogen. that will give you triphosphorus pentanitride.
There will be 89.865 grams of Ar. If you put it in sig figs, it will be rounded to 89.9g At.
Answer:
1200 mL
Explanation:
Step 1:
Data obtained from the question. This includes the following:
Initial volume (V1) = 400 mL.
Initial pressure (P1) = 600 mmHg.
Final volume (V2) =..?
Final pressure (P2) = 200 mmHg
Step 2:
Determination of the final volume i.e the new volume of the gas.
Considering the question given, we understood that the temperature is constant. Therefore the gas is obeying Boyle's law. Using the Boyle's law equation, the new volume is obtained as follow:
P1V1 = P2V2
600 x 400 = 200 x V2
Divide both side by 200
V2 = (600 x 400) /200
V2 = 1200 mL
Therefore, the new volume of the gas is 1200 mL.