The pressure of a gas depends on the temperature and volume of the gas.
<h3>Ideal gas equation</h3>
PV = nRT
Where
- P is the pressure
- V is the volume
- n is the number of mole
- R is the gas constant
- T is the temperature
From the equation given above, we obtained the following:
PV = nRT
Divide both sides by V
P = nRT / V
R is constant and n = 1
P = T / V
Thus, we can see that the pressure (P) is dependent on the temperature (T) and the volume (V)
Learn more about ideal gas equation:
brainly.com/question/4147359
#SPJ11
Oxygen and hydrogen share electrons in the molecule of water to form covalent bonds.
<h3>What kinds of bonds exist?</h3>
- Covalent bonds: These are formed between nonmetals and electrons by sharing electrons.
- Ionic bonds: These are formed between metals, which lose electrons, and nonmetals, which gain electrons.
- Metallic bonds: There are formed between metals. Electrons are delocalized in a cloud.
Water, H₂O, is a molecule made of 2 nonmetals: oxygen and hydrogen. The bonds that hold water molecules together are due to shared electrons, and known as covalent bonds.
Oxygen and hydrogen share electrons in the molecule of water to form covalent bonds.
Learn more about chemical bonds here: brainly.com/question/6071754
Answer:
The mass of oxygen is 12.10 g.
Explanation:
The decomposition reaction of potassium chlorate is the following:
2KClO₃(s) → 2KCl(s) + 3O₂(g)
We need to find the number of moles of KClO₃:
Where:
m: is the mass = 30.86 g
M: is the molar mass = 122.55 g/mol
Now, we can find the number of moles of O₂ knowing that the ratio between KClO₃ and O₂ is 2:3
Finally, the mass of O₂ is:
Therefore, the mass of oxygen is 12.10 g.
I hope it helps you!
Answer:
The veins that carry oxygenated bloof back into the heart are the pulmonary arteries.
Explanation:
Oxygen-rich blood flows from the lungs back into the left atrium (LA), or the left upper chamber of the heart, through four pulmonary veins. Oxygen-rich blood then flows through the mitral valve (MV) into the left ventricle (LV), or the left lower chamber.