By applying the Boyle's equation and substituting our given data the volume of the container was found to be 418.14 Litres
<h3>
Boyle's Law</h3>
Given Data
- number of moles of Ne = 5.1169 mol
We know that the relationship between pressure and temperature is given as
PV = nRT
R = 0.08206
Making the volume subject of formula we have
V= nRT/P
Substituting our given data to find the volume we have
V = 5.1169*0.08206*911/0.9148
V = 382.522353554/0.9148
V = 418.14 L
Learn more about Boyle's law here:
brainly.com/question/469270
First, we need to calculate moles of hydrazoic acid NH3:
moles NH3 = molarity * volume
= 0.15 m * 0.025 L
= 0.00375 moles
moles NaOH = molarity * volume
= 0.15 m * 0.015 L
= 0.00225 moles
after that we shoul get the total volume = 0.025L + 0.015L
= 0.04 L
So we can get the concentration of NH3 & NaOH by:
∴[NH3] = moles NH3 / total volume
= 0.00375 moles / 0.04 L
= 0.09375 M
∴[NaOH] = moles NaOH / total volume
= 0.00225 moles / 0.04 L
= 0.05625 M
then, when we have the value of Ka of NH3 so we can get the Pka value from:
Pka = -㏒Ka
= - ㏒ 1.9 x10^-5
= 4.7
finally, by using H-H equation we can get PH:
PH = Pka + ㏒[salt/ basic]
PH = 4.7 +㏒[0.05625/0.09375]
∴ PH = 4.48
The given alkyne is Option A 3-heptyne
<h3>
What is an Alkyne ?</h3>
The hydrocarbon having at least one C-C triple bond is called an Alkyne.
It has the general formula of
.
In the question it is being mentioned that it is an alkyne so there will be a triple bond and not a double bond.
It has been asked in the question that
CH3CH₂C ≡ CCH₂CH₂CH3 is which alkyne from the given option.
The counting of the Carbon chain is done from the left side and the Triple bond is at the 3rd Carbon , so 3-heptyne .
To know more about Alkyne
brainly.com/question/23508203
#SPJ1
<h3 />