Velocity is defined as Distance divided by Time.
In other words, V = D/T.
Now that we have our formula, we can solve.
Let's plug in the numbers we have.
We have 12m [East (direction not necessary when solving yet)] for our distance, and 0.15s as our time.
Divide the distance (12 /) by the time (0.15)
12 / 0.15 = 80.
Your velocity is 80 m/s [E]
I hope this helps!
Answer:
THE WALL MOVES AWAY FROM THE BALL
Explanation:
NEWTON'S THIRD LAW STATES THAT THERE IS A OPPOSITE REACTION
Answer:
Between 2.0 s and 4.0 s (B and C)
Between 5.0 s and 8.0 s (D and E)
Between 10.0 s and 11.0 s (F and G)
Explanation:
The graph shown in the figure is a velocity-time graph, which means that:
- On the x-axis, the time is plotted
- On the y-axis, the velocity is plotted
Therefore, this means that the object is not moving when the line is horizontal (because at that moment, the velocity is constant, so the object is not moving). This occurs in the following intervals:
Between 2.0 s and 4.0 s (B and C)
Between 5.0 s and 8.0 s (D and E)
Between 10.0 s and 11.0 s (F and G)
From the graph, it would be possible to infer additional information. In particular:
- The area under the graph represents the total distance covered by the object
- The slope of the graph represents the acceleration of the object
Answer:
(A) Acceleration will be 
(b) Time taken will be 
(c) Force will be
Explanation:
We have given that electron starts from rest so initial velocity u = 0 m/sec
Final velocity 
Mass of electron 
Distance traveled by electron 
From third equation of motion we know that 
(a) So 

(b) From first equation of motion we know that v = u+at
So 

(c) From newton's law we know that force
