Answer:
The total surface are of the bowl is given by: 0.0532*pi m² (approximately 0.166533 m²)
Explanation:
The total surface area of the semi-spherical bowl can be decomposed in three different sections: 1) an outer semi-sphere of radius 12 cm, 2) an inner semi-sphere of radius 10 cm, and 3) the edge, which is a 2-dimensional ring with internal radius of 10 cm and external radius of 12 cm. We will compute the areas independently and then sum them all.
a) Outer semi-sphere:
A1 = 2*pi*r² = 2*pi*(12 cm)² = 288*pi cm² = 904.78 cm²
b) Inner semi-sphere:
A2 = 2*pi*(10 cm)² = 200*pi cm² = 628.32 cm²
c) Edge (Ring):
A3 = pi*(r1² - r2²) = pi*((12 cm)²-(10 cm)²) = pi*(144-100) cm² = 44*pi cm² = 138.23 cm²
Therefore, the total surface area of the bowl is given by:
A = A1 + A2 + A3 = 288*pi cm² + 200*pi cm² + 44*pi cm² = 532*pi cm² (approximately 1665.33 cm²)
Changing units to m², as required in the problem, we get:
A = 532*pi cm² * (1 m² / 10, 000 cm²) = 0.0532*pi m² (approximately 0.166533 m²)
Answer:
374.39 J/K
Explanation:
Entropy: This can be defined as the degree of disorder or randomness of a substance.
The S.I unit of entropy is J/K
ΔS = ΔH/T ..................................... Equation 1
Where ΔS = entropy change, ΔH = Heat change, T = temperature.
ΔH = cm................................... Equation 2
Where,
c = specific latent heat of fusion of water = 333000 J/kg, m = mass of ice = 0.3071 kg.
Substitute into equation 2
ΔH = 333000×0.3071
ΔH = 102264.3 J.
Also, T = 273.15 K
Substitute into equation 1
ΔS = 102264.3/273.15
ΔS = 374.39 J/K
Thus, The change in entropy = 374.39 J/K
Answer:
22.2 m/s
Explanation:
First, we need to convert km to m by multiplying by 1000. This means that the car traveled 320 000 meters.
Next, we convert hours to minutes by multiplying by 3600 (the number of seconds in an hour). This means that overall, the car traveled 320 000 m in 14 400 seconds.
The average speed can be found by using the equation
. After substitution, this gives the fraction
, which reduces to 22
m/s, or about 22.2 m/s.