<span>First we can find the circumference of the whole circle with a radius of 5 feet.
circumference = 2 pi radius
circumference = (2 pi) (5 feet)
circumference = (10 pi) feet
From one high point to the other high point, the string moves through an angle of 10 degrees. Since a full circle is 360 degrees, this angle is 1/36 of a full circle.
Therefore, the arc length is 1/36 of the whole circumference.
arc length = (1/36) (circumference)
arc length = (1/36) (10 pi) feet
arc length = 0.873 feet</span>
(a) Let's convert the final speed of the car in m/s:

The kinetic energy of the car at t=19 s is

(b) The average power delivered by the engine of the car during the 19 s is equal to the work done by the engine divided by the time interval:

But the work done is equal to the increase in kinetic energy of the car, and since its initial kinetic energy is zero (because the car starts from rest), this translates into

(c) The instantaneous power is given by

where F is the force exerted by the engine, equal to F=ma.
So we need to find the acceleration first:

And the problem says this acceleration is constant during the motion, so now we can calculate the instantaneous power at t=19 s:
Answer:
I just want the points but you should pay attention in class jk
Answer:
15: Animals are able to detect the first of an earthquake's seismic waves—the P-wave, or pressure wave, that arrives in advance of the S-wave, or secondary, shaking wave. This likely explains why animals have been seen snapping to attention, acting confused or running right before the ground starts to shake.
16: No, it is not even remotely true. Microwaves cook food from the outside in, just like a regular oven. In fact, most of the cooking on the inside of the food, depending on its thickness, is done by heat conduction from the outside surfaces inwards, as the microwaves do not actually penetrate that far into the food.
Answer:
0.20
Explanation:
The box is moving at constant velocity, which means that its acceleration is zero; so, the net force acting on the box is zero as well.
There are two forces acting in the horizontal direction:
- The pushing force: F = 99 N, forward
- The frictional force:
, backward, with
coefficient of kinetic friction
m = 50 kg mass of the box
g = 9.8 m/s^2 gravitational acceleration
The net force must be zero, so we have

which we can solve to find the coefficient of kinetic friction:
