The two conditions are:
1) Application of-force on the body.
2) Displacement of the body in the direction of force.
Hope this helps!
Answer:
The parallel plate capacitor is the simplest form of capacitor. ... The property of a capacitor to store charge on its plates in the form of an electrostatic field is called the Capacitance of the capacitor. Not only that, but capacitance is also the property of a capacitor which resists the change of voltage across it.
Explanation:
credits :- adultsscience
Answer: T = 472.71 N
Explanation: The wire vibrates thus making sound waves in the tube.
The frequency of sound wave on the string equals frequency of sound wave in the tube.
L= Length of wire = 26cm = 0.26m
u=linear density of wire = 20g/m = 0.02kg/m
Length of open close tube = 86cm = 0.86m
Sound waves in the tube are generated at the second vibrational mode, hence the relationship between the length of air and and wavelength is given as
L = 3λ/4
0.86 = 3λ/4
3λ = 4 * 0.86
3λ = 3.44
λ = 3.44/3 = 1.15m.
Speed of sound in the tube = 340 m/s
Hence to get frequency of sound, we use the formulae below.
v = fλ
340 = f * 1.15
f = 340/ 1.15
f = 295.65Hz.
f = 295.65 = frequency of sound wave in pipe = frequency of sound wave in string.
The string vibrated at it fundamental frequency hence the relationship the length of string and wavelength is given as
L = λ/2
0.26 = λ/2
λ = 0.52m
The speed of sound in string is given as v = fλ
Where λ = 0.52m f = 295.65 Hz
v = 295.65 * 0.52
v = 153.738 m/s.
The velocity of sound in the string is related to tension, linear density and tension is given below as
v = √(T/u)
153.738 = √T/ 0.02
By squaring both sides
153.738² = T / 0.02
T = 153.738² * 0.02
T = 23,635.372 * 0.02
T= 472.71 N
Answer:
The magnitude of angular acceleration is
.
Explanation:
Given that,
Initial angular velocity, 
When it switched off, it comes o rest, 
Number of revolution, 
We need to find the magnitude of angular acceleration. It can be calculated using third equation of rotational kinematics as :
So, the magnitude of angular acceleration is
. Hence, this is the required solution.
The answer is c cause it is not moving like the other 3