The resultant displacement of the man is 109.77 km in the direction N60°E.
<h3>Displacement</h3>
Displacement is the distance travelled in a specified direction.
To calculate displacement, the straight line from starting point to end point of travel is taken and calculated.
<h3>Resultant displacement of the man </h3>
In the example above, a man walks 95 km, East, then 55 km, north.
The two distances form a right-angled triangle with two sides 95 and 55 units. The hypotenuse gives the resultant displacement, D.
Using Pythagoras rule:
D^2 = 95^2 + 55^2
D^2 = 12050
D = 109.77
Thus, the resultant displacement is 109.77 km
To calculate the direction:
Let the direction be y
y + x = 90°
tan x = 55/95
tanx x = 0.578
x = 30°
Then, y = 90 - 30
y = 60°
Therefore, the resultant displacement of the man is 109.77 km in the direction N60°E.
Learn more about displacement at: brainly.com/question/321442
The average speed of the car for the entire trip can be calculate by using:

where S is the total distance covered by the car, and t is the total time taken.
The total distance travelled by the car is:

while the total time taken is:

so, the average speed of the car is:

so, the correct answer is (3) 85 km/h.
On Earth, a cannonball with a mass of 20 kg would weigh 196 Newtons.
With the formula F=mg, where F is the weight in Newtons, m is the mass, and g is the acceleration due to gravity on the Earth which is 9.8m/s^2.
F=20kg x 9.8m/s^2= 196 Newtons
BUT on the moon, acceleration due to gravity is 1.6 m/s^2,
so F=mg=20kgx1.6m/s^2= 32 N
Answer:
D = 2.38 m
Explanation:
This exercise is a diffraction problem where we must be able to separate the license plate numbers, so we must use a criterion to know when two light sources are separated, let's use the Rayleigh criterion, according to this criterion two light sources are separated if The maximum diffraction of a point coincides with the first minimum of the second point, so we can use the diffraction equation for a slit
a sin θ = m λ
Where the first minimum occurs for m = 1, as in these experiments the angle is very small, we can approximate the sine to the angle
θ = λ / a
Also when we use a circular aperture instead of slits, we must use polar coordinates, which introduce a numerical constant
θ = 1.22 λ / D
Where D is the circular tightness
Let's apply this equation to our case
D = 1.22 λ / θ
To calculate the angles let's use trigonometry
tan θ = y / x
θ = tan⁻¹ y / x
θ = tan⁻¹ (4.30 10⁻² / 140 10³)
θ = tan⁻¹ (3.07 10⁻⁷)
θ = 3.07 10⁻⁷ rad
Let's calculate
D = 1.22 600 10⁻⁹ / 3.07 10⁻⁷
D = 2.38 m
The portion of the flux leaves the curved surface of the cylinder is 60%.
<h3 /><h3>What are electrons?</h3>
The electrons are the spinning objects around the nucleus of the atom of the element in an orbit.
If a point charge is located at the center of a cylinder and the electric flux leaving one end of the cylinder is 20% of the total flux leaving the cylinder.
If 20% of the flux leave from one end, then another 20% will leave from another end.
So, the net flux through curved surface is
100 -20 -20 = 60%
Thus, the total flux leaves the curved surface of the cylinder is 60%
Learn more about electrons.
brainly.com/question/1255220
#SPJ1