Answer:
The circular loop experiences a constant force which is always directed towards the center of the loop and tends to compress it.
Explanation:
Since the magnetic field, B points in my direction and the current, I is moving in a clockwise direction, the current is always perpendicular to the magnetic field and will thus experience a constant force, F = BILsinФ where Ф is the angle between B and L.
Since the magnetic field is in my direction, it is perpendicular to the plane of the circular loop and thus perpendicular to L where L = length of circular loop. Thus Ф = 90° and F = BILsin90° = BIL
According to Fleming's left-hand rule, the fore finger representing the magnetic field, the middle finger represent in the current and the thumb representing the direction of force on the circular loop.
At each point on the circular loop, the force is always directed towards the center of the loop and thus tends to compress it.
<u>So, the circular loop experiences a constant force which is always directed towards the center of the loop and tends to compress it.</u>
I think it would be WEIGHT and ROUGHNESS OF SURFACE.
The locks referred to here are the elevators that are used to transport boats safely from one water level to another in dams. These two varying water depths allow river traffic to operate The attached picture shows how boats enter locks in dam sites.
To regulate traffic, there are traffic lights that signal boatmen to adjust their speed when approaching the lock. The red light means to stop and to steer clear away from the lock to allows the boats inside to exit. The green light signals to enter the lock. Lastly, the amber light means approach the lock at a safe speed and under full control.