Answer:
mechanical energy
Explanation:
Mechanical energy is the combination of both potential energy and kinetic
Mechanical energy can be divided as
1)kinetic energy, this energy vis regarded as the energy of motion
2) potential energy which is the stored energy of position.
Mechanical energy reffered to as
motion energy this energy is responsible for the movement of an object based on its position as well as motion.
Mechanical energy= U + K
Where U= potential energy
K= Kinectic energy
As the tire is sitting on top of a ramp, it posses "potential energy" as it is released and rolls down the ramp the potential is converted to Kinectic energy
Potential energy is the energy possessed by a body by virtue of its position or configuration . And energy is the capacity of doing work since power is work divided by time therefore change in potential energy divided by time is equal to the power of the object.
Answer:
E = 12640.78 N/C
Explanation:
In order to calculate the electric field you can use the Gaussian theorem.
Thus, you have:

ФE: electric flux trough the Gaussian surface
Q: net charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2
If you take the Gaussian surface as a spherical surface, with radius r, the electric field is parallel to the surface anywhere. Then, you have:

r can be taken as the distance in which you want to calculate the electric field, that is, 0.795m
Next, you replace the values of the parameters in the last expression, by taking into account that the net charge inside the Gaussian surface is:

Finally, you obtain for E:

hence, the electric field at 0.795m from the center of the spherical shell is 12640.78 N/C
Ohm's Law tells the relationship between voltage, current, and resistance.
It can be written in three different ways, depending on which ones you know,
and which one you want to find.
Here's the one we need:
Resistance = (voltage) divided by (current)
= (120 V) / (0.5 Amp)
= 240 ohms .