Answer:
D) Electric power distribution.
Explanation:
Electric power distribution requires high voltages to efficiently transmit electric power. This requires use of a transformer which uses electromagnetic induction.
)
5
-5
1 2 3
4
5
Other than at t = 0, when is the velocity of
the object equal to zero?
1. 5.0 s
2. 4.0 s
3. 3.5 s
4. At no other time on this graph. correct
5. During the interval from 1.0 s to 3.0 s.
Explanation:
Since vt =
Z t
0
a dt, vt
is the area between
the acceleration curve and the t axis during
the time period from 0 to t. If the area is above
the horizontal axis, it is positive; otherwise, it
is negative. In order for the velocity to be zero
at any given time t, there would have to be
equal amounts of positive and negative area
between 0 and t. According to the graph, this
condition is never satisfied.
005 (part 1 of 1) 0 points
Identify all of those graphs that represent motion
at constant speed (note the axes carefully).
a) t
x
b) t
v
c) t
a
d) t
v
e) t
a
Biceps curls & pushups , benchpress
The equation for this is very simple you add then you subtract then you get the answer then you divide then it all works out for you
Answer: Relative motion
Explanation: If two objects are moving either towards or away from each other with both having their velocities in a reference frame and someone is outside this reference frame seeing the motion of the two objects.
The observer ( in his own frame of reference) will measure a different velocity as opposed to the velocities of the two object in their own reference frame. p
Both the velocity measured by the observer in his own reference frame and the velocity of both object in their reference is correct.
Velocities of this nature that have varying values based on motion referenced to another body is known as relative velocity.
Motion of this nature is known as relative motion.
<em>Note that the word reference frame is simply any where the motion is occurring and the specified laws of motion is valid</em>
<em />
For this example of ours, the reference frame of the companion is the train and the telephone poles has their reference frame as the earth.
The companion will measure the velocity of the telephone poles relative to him and the velocity of the telephone pole relative to an observer outside the train will be of a different value.