1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
3 years ago
13

You warm your self besides a fire that you built on the beach...

Physics
1 answer:
chubhunter [2.5K]3 years ago
5 0

Answer:

Radiation

Explanation:

Radiation is the transfer of heat through waves. (Fire's hot air/waves warms you)

Not conduction because you have to come in direct contact with the fire in order to be considered conduction.

Not convection because those happen when heat causes a difference in densities, allowing substances to circulate.

You might be interested in
How many photons will be required to raise the temperature of 1.8 g of water by 2.5 k ?'?
tatyana61 [14]
Missing part in the text of the problem: 
"<span>Water is exposed to infrared radiation of wavelength 3.0×10^−6 m"</span>

First we can calculate the amount of energy needed to raise the temperature of the water, which is given by
Q=m C_s \Delta T
where
m=1.8 g is the mass of the water
C_s = 4.18 J/(g K) is the specific heat capacity of the water
\Delta T=2.5 K is the increase in temperature.

Substituting the data, we find
Q=(1.8 g)(4.18 J/(gK))(2.5 K)=18.8 J=E

We know that each photon carries an energy of
E_1 = hf
where h is the Planck constant and f the frequency of the photon. Using the wavelength, we can find the photon frequency:
\lambda =  \frac{c}{f}= \frac{3 \cdot 10^8 m/s}{3 \cdot 10^{-6} m}=1 \cdot 10^{14}Hz

So, the energy of a single photon of this frequency is
E_1 = hf =(6.6 \cdot 10^{-34} J)(1 \cdot 10^{14} Hz)=6.6 \cdot 10^{-20} J

and the number of photons needed is the total energy needed divided by the energy of a single photon:
N= \frac{E}{E_1}= \frac{18.8 J}{6.6 \cdot 10^{-20} J} =2.84 \cdot 10^{20} photons
4 0
3 years ago
Please help with this and explain it,if you can.
vladimir2022 [97]

Answer:

displacement at 45 s  =  30

                           65 s  = 50

So the average speed over the interval from 45 s to 65 s is

(50 - 30) cm / 20 s = 1 cm / sec

As a check an average speed of 1 cm / sec for 20 sec will produce a

displacement of 1 cm / sec * 20 sec = 20 cm  or from 30 to 50 cm

4 0
3 years ago
A cooling fan is turned off when it is running at 850 rev/min. It turns 1500 revolutions before it comes to a stop. (a) What was
8_murik_8 [283]

Answer

given,

cooling fan revolution = 850 rev/min

fan turns before revolution = 1500 revolutions

\omega = 850 \dfrac{2\pi}{60}

\omega = 89\ rad/s

θ = 1500 revolution

θ = 1500 x 2 x π

θ = 9424.78 rad

a) using equation of rotation

ω² = ω₀² + 2 α θ

ω = 0 because body comes to rest

0 = 89² + 2 x α x 9424.78

α = -0.42 rad/s²

b) time take for the fan to stop

ω = ω₀ + α t

0 = 89 - 0.42 t

t = \dfrac{89}{0.42}

t = 211.9 s

5 0
3 years ago
A block of mass 8 m can move without friction
nekit [7.7K]

Answer:

Let M1 = 8 kg and M2 = 34 kg

F = M a = (M1 + M2) a

F = M2 g     the net force accelerating the system

M2 g = (M1 + M2) a

a = M2 / (M1 + M2) g = 34 / (42) g = .81 g = 7.9 m/s^2

5 0
2 years ago
He throws a second ball (B2) upward with the same initial velocity at the instant that the first ball is at the ceiling. c. How
Gwar [14]

Answer:

hello your question has some missing parts

A juggler performs in a room whose ceiling is 3 m above the level of his hands. He throws a ball vertically upward so that it just reaches the ceiling.

answer : c) 0.39 sec

               d)  2.25 m

               e) 1.92 m/sec

Explanation:

The initial velocity of the first ball = 7.67 m/sec ( calculated )

Time required for first ball to reach ceiling = 0.78 secs ( calculated )

Determine how long after the second ball is thrown do the two balls pass each other

Distance travelled by first ball downwards when it meets second ball can be expressed as : d = 1/2 gt^2 =  9.8t^2 / 2

hence d = 4.9t^2  ----- ( 1 )

Initial speed of second ball = first ball initial speed = 7.67 m/sec

3 - d = 7.67t - 4.9t  ---- ( 2 )

equating equation 1 and 2

3 = 7.67t   therefore t = 0.39 sec

Determine how far the balls are above the Juggler's hands ( when the balls pass each other )

form equation 1 ;

d = 4.9 t^2 = 4.9 *(0.39)^2 = 0.75 m

therefore the height the balls are above the Juggler's hands is

3 - d = 3 - 0.75 = 2.25 m

determine their velocities when the pass each other

velocity = displacement / time

velocity = d / t = 0.75 / 0.39 sec  = 1.92 m/sec

7 0
3 years ago
Other questions:
  • For a satellite to be in a circular orbit 950 km above the surface of the earth, what orbital speed must it be given?
    12·1 answer
  • If an object starts at rest and moves 90 meters south along a straight line for 3 seconds, what is its average velocity?
    14·2 answers
  • The laws of thermodynamics state that, in a heat engine, _____.
    10·2 answers
  • Which quantity is a vector quantity A. Acceleration B. Mass C. Speed D. Volume
    10·1 answer
  • What are the components of a vector with a magnitude of 4.00 and a direction of -112 degrees
    9·1 answer
  • Why does the sky change colors at sunset?
    9·1 answer
  • A 125kg man buy a 6kg watermelon, a 3kg cantaloupe, and 6kgs of potatoes, he walks home with his purchases in a large bag. His w
    12·1 answer
  • Vary the sled’s height and mass. Observe the effect of each change on the potential energy of the sled.
    6·1 answer
  • Kindly answer the question about Work and Power. Image is attached below.
    5·1 answer
  • Find out how the position of the Sun would be different at 12:00 midday in December than in June. What path would the sun take f
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!