Answer:
0.75
Explanation:
Since the static frictional force is the maximum force applied just before sliding, our frictional force, F is 300 N.
Since F = μN where μ = coefficient of static friction and N = normal force = 400 N (which is the downward force applied against the surface).
So, μ = F/N
= 300 N/400 N
= 3/4
= 0.75
So, the coefficient of static friction μ = 0.75
Answer:
Explanation:
Given
charge of first body 
charge of second body 
Particle 1 is at origin and particle 2 is at 
third Particle which charge +q must be placed left of
because it will repel the q charge while
will attract it
suppose it is placed at a distance of x m








For an ideal transformer power loss is assumed to be zero
i.e. the power in primary coil due to input voltage must be equal to power in secondary coil due to output voltage
this can be written in form of equation

here we know that


![i_1 = 10 A{/tex]now we will use above equation[tex]140*3.5 = 10 * V_1](https://tex.z-dn.net/?f=i_1%20%3D%2010%20A%7B%2Ftex%5D%3C%2Fp%3E%3Cp%3Enow%20we%20will%20use%20above%20equation%3C%2Fp%3E%3Cp%3E%5Btex%5D140%2A3.5%20%3D%2010%20%2A%20V_1)

So primary coil voltage is 49 Volts
Along plate edges, at points where oceanic or continental plates meet ot at the edges of the plates
Time required : 3 s
<h3>Further explanation
</h3>
Power is the work done/second.

To do 33 J of work with 11 W of power
P = 11 W
W = 33 J
