Answer:
A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.
Explanation:
The bulk modulus is represented by the following differential equation:

Where:
- Bulk module, measured in pascals.
- Sample volume, measured in cubic meters.
- Local pressure, measured in pascals.
Now, let suppose that bulk remains constant, so that differential equation can be reduced into a first-order linear non-homogeneous differential equation with separable variables:

This resultant expression is solved by definite integration and algebraic handling:




The final volume is predicted by:

If
,
and
, then:


Change in volume due to increasure on pressure is:



A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.
Answer:
okay here is a thing I learned when I was younger in my middle school:
Explanation:
my teacher would tell me that metals are considered a weak metals are on the left side and the good metals are located on the right side because the only way I remembered was the right means it is really strong and the left is weak and not that supportive. but I think that's how I still think it is or other people may have their own opinions. but hope this helped out with your question!
Answer:
v = 8.09 m/s
Explanation:
For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.
Let's calculate the energy
starting point. Higher
Em₀ = U = m gh
final point. To go down the slope
Em_f = K = ½ m v²
The work of the friction force is
W = fr L cos 180
to find the friction force let's use Newton's second law
Axis y
N - W_y = 0
N = W_y
X axis
Wₓ - fr = ma
let's use trigonometry
sin θ = y / L
sin θ = 11/110 = 0.1
θ = sin⁻¹ 0.1
θ = 5.74º
sin 5.74 = Wₓ / W
cos 5.74 = W_y / W
Wₓ = W sin 5.74
W_y = W cos 5.74
the formula for the friction force is
fr = μ N
fr = μ W cos θ
Work is friction force is
W_fr = - μ W L cos θ
Let's use the relationship of work with energy
W + ΔU = ΔK
-μ mg L cos 5.74 + (mgh - 0) = 0 - ½ m v²
v² = - 2 μ g L cos 5.74 +2 (gh)
v² = 2gh - 2 μ gL cos 5.74
let's calculate
v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74
v² = 215.6 -150.16
v = √65.44
v = 8.09 m/s
Answer:
0.00970 s
Explanation:
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
Force due to magnetic field = qvB sin θ
q = charge on the particle = 5.4 μC
v = velocity of the charge
B = magnetic field strength = 2.7 T
θ = angle between the velocity of the charge and the magnetic field = 90°, sin 90° = 1
F = qvB
Centripetal force responsible for circular motion = mv²/r = mvw
where w = angular velocity.
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
mvw = qvB
mw = qB
w = (qB/m) = (5.4 × 10⁻⁶ × 2.7)/(4.5 × 10⁻⁸)
w = 3.24 × 10² rad/s
w = 324 rad/s
w = (angular displacement)/time
Time = (angular displacement)/w
Angular displacement = π rads (half of a circle; 2π/2)
Time = (π/324) = 0.00970 s
Hope this Helps!!!
Answer:
<u>The magnitude of the friction force is 8197.60 N</u>
Explanation:
Using the definition of the centripetal force we have:

Where:
- m is the mass of the car
- v is the speed
- R is the radius of the curvature
Now, the force acting in the motion is just the friction force, so we have:
<u>Therefore the magnitude of the friction force is 8197.60 N</u>
I hope it helps you!