1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
3 years ago
8

Wagon wheel. While working on your latest novel about settlers crossing the Great Plains in a wagon train, you get into an argum

ent with your co-author regarding the moment of inertia of an actual wooden wagon wheel. The 70-kg wheel is 120-cm in diameter and has heavy spokes connecting the rim to the axle. Your co-author claims that you can approximate using I = MR2 (like for a hoop) but you anticipate I will be significantly less than that because of the mass located in the spokes. To find I experimentally, you mount the wheel on a low-friction bearing then wrap a light cord around the outside of the rim to which you attach a 20-kg bag of sand. When the bag is released from rest, it falls with a downward acceleration of 2.95 m/s2.
Physics
1 answer:
OverLord2011 [107]3 years ago
7 0

Answer:

I = 16.7kgm²

Explanation:

Since, Torque is given by,

\tau = F*r = I*\alpha

here, I = Moment of inertia = ??

\alpha = angular acceleration of wheel = a/r

F = tangential tension acting on the wheel = T

a = acceleration of bag of sand = 2.95 m/s^2

r = radius of wheel = d/2 = 120/2 = 60 cm = 0.60 m

from force balance on sand bag,

mg - T = m*a

T = m*(g-a)

m = mass of sand bag = 20 kg

So, I = T*r/\alpha = m*(g-a)*r/(a/r)

Using known values:

I = 20*(9.81 - 2.95)*0.60/(2.95/0.60) = 16.74

I = 16.7 kgm² = Moment of inertia of wheel experimentally

also, Moment of inertia of wheel theoretically(I') = M*r²

given, M = mass of wheel = 70 kg

I' = 70*0.60²= 25.2 kgm² = Moment of inertia of wheel theoretically

You might be interested in
Orange light of wavelength 0.61 µ m in air enters a block of glass with εr = 1.44. What color would it appear to a sensor embedd
77julia77 [94]

Answer:

0.5083\ \mu m

Explanation:

\lambda_0 = Actual wavelength = 0.61\ \mu m

\varepsilon_r = Relative permittivity = 1.44

The observed wavelength in the glass is given by

\lambda=\dfrac{\lambda_0}{\sqrt{\varepsilon_r}}\\\Rightarrow \lambda=\dfrac{0.61}{\sqrt{1.44}}\\\Rightarrow \lambda=0.5083\ \mu m

The wavelength lies in the range of green light.

Hence, the observed color of light is 0.5083\ \mu m

8 0
3 years ago
A boy pushes a 50 kilogram wagon with a force of 4 N east while an orangutan pushes the wagon
ladessa [460]
The wagon does not move
6 0
3 years ago
Terry can ride 30 miles in 2 hours. If his riding speed is
Anni [7]

Answer:  20.4 miles

Explanation:

Here we need to use the equation:

Velocity = Distance/Time.

Initially we have that he can travel 30 miles in 2 hours, so the velocity is:

V = 30mi/2h = 15mph

Now, we reduce the velocity by 3 mph, so the new velocity is 15mph - 3 mph = 12mph.

Now we want to know the distance traveled in 1.7 hours with this velocity, this is.

Velocity*Time = Distance

12mi/h*1.7h = 20.4 miles

7 0
3 years ago
CAN SOMEBODY PLEASE HELP ME! i need help and i wanna pass
umka21 [38]

Answer:it would be C

Explanation:

8 0
3 years ago
Peg P is driven by the forked link OA along the path described by r = eu, where r is in meters. When u = p4 rad, the link has an
8_murik_8 [283]

Answer:

The transverse component of acceleration is 26.32 m/s^2 where as radial the component of acceleration is 8.77 m/s^2

Explanation:

As per the given data

u=π/4 rad

ω=u'=2 rad/s

α=u''=4 rad/s

r=e^u

So the transverse component of acceleration are given as

a_{\theta}=(ru''+2r'u')\\

Here

r=e^u\\r=e^{\pi/4}\\r=2.1932 m

r'=e^u.u'\\r'=2.1932 \times 2\\r'=4.3864 m

So

a_{\theta}=(ru''+2r'u')\\a_{\theta}=(2.1932\times 4+2\times 4.3864 \times 2)\\a_{\theta}=26.32 m/s\\

The transverse component of acceleration is 26.32 m/s^2

The radial component is given as

a_r=r''-r\theta'^2

Here

r''=e^u.u'^2+e^u u''\\r''=2.1932 \times (2)^2+2.1932\times 4\\r''=17.5456 m

So

a_r=r''-ru'^2\\a_r=17.5456-2.1932\times (2)^2\\a_r=8.7728 m/s^2

The radial component of acceleration is 8.77 m/s^2

6 0
3 years ago
Other questions:
  • The circuit below represents a _ circuit<br> .Series<br> .Micro<br> .Parallel<br> .Complex
    15·1 answer
  • How does speed relate to the distance covered and the time taken for travel?
    7·1 answer
  • Laws that implemented the consumers' right to be informed forbid __________.
    12·2 answers
  • An electron moving at 3.94 103 m/s in a 1.23 T magnetic field experiences a magnetic force of 1.40 10-16 N. What angle does the
    12·1 answer
  • All life on earth exists in a region known as
    14·1 answer
  • Select the correct answer.
    8·2 answers
  • A mouse ran 25.45 meters in 11 seconds, stopped for 5 seconds to eat a piece of cheese, ran 2.5 meters in 1.2 seconds to hide be
    15·1 answer
  • Chất rắn có tính dị hướng là vật rắn
    5·1 answer
  • Are you an antisocial person. Me honestly am
    8·2 answers
  • Two similar pyramids have base areas of 12.2 cm2 and 16 cm2. the surface area of the larger pyramid is 56 cm2. what is the surfa
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!