Answer:
The value is 
Explanation:
From the question we are told that
The weight of the horizontal solid disk is
The radius of the horizontal solid disk is
The force applied by the child is
The time considered is 
Generally the mass of the horizontal solid disk is mathematically represented as

=> 
=> 
Generally the moment of inertia of the horizontal solid disk is mathematically represented as

=>
=> 
Generally the net torque experienced by the horizontal solid disk is mathematically represented as

=> 
=> 
=> 
Gnerally from kinematic equation we have that

Here
is the initial angular velocity velocity of the horizontal solid disk which is 
So

=>
Generally the kinetic energy is mathematically represented as

=> 
=> 
Answer:
Hay diversas leyes que podemos usar acá.
Acá sabemos que la vejiga aumenta su tamaño al reducir la presión, esto tiene sentido, pues al haber menos presión, hay menos fuerza que comprime la vejiga, lo que le permite aumentar su volumen.
Acá tenemos una relación inversa de la forma: V = K/P
Una relación inversa donde la presión esta en el denominador y K es un termino que no depende ni del volumen ni de la presión.
Entonces, a medida que aumenta P, el denominador aumenta, por lo que el valor del volumen decrece.
Un ejemplo de una ecuación similar es la del gas ideal, por ejemplo, para un gas ideal dentro de un globo de volumen V para una dada presión P:
V = nRT/P
donde n es el numero de moles, R es la constante termodinámica y T es la temperatura, acá podemos ver que esta ecuación tiene la misma forma fundamental que la escrita arriba.
HCl + NaOH -> H2O + NaCl
CaCO3 + KI -> K2CO2 + CaI2
AlF3 + Mg(NO3)2 -> Al(NO3)3 + MgF2
PM me the statements, and i'll answer it then.
Answer:
Explanation:
Given
mass of boy=36 kg
length of swing=3.5 m
Let T be the tension in the swing
At top point 
where v=velocity needed to complete circular path
Th-resold velocity is given by 

So apparent weight of boy will be zero at top when it travels with a velocity of 
To get the velocity at bottom conserve energy at Top and bottom
At top 
Energy at Bottom 
Comparing two as energy is conserved



Apparent weight at bottom is given by
