Answer:
-4.71 m/s
Explanation:
Given:
y₀ = 1.13 m
y = 0 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: v
v² = v₀² + 2a (y − y₀)
v² = (0 m/s)² + 2(-9.8 m/s²) (0 m − 1.13 m)
v = -4.71 m/s
Answer:
The answer is A. C and O..
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
Answer: 57.79%
Explanation: 152J/263J=.577946768 or 57.79% or roundedthe nearest whole percent is 58%
The ultimate energy source for wind comes from Earth's uneven heating on Earth's surface which can be caused mainly by the sun.