Because mass and distance determine gravity, so the more mass you have, the more gravity.
Explanation:
We know that the sky appears to us like a sphere called as celestial sphere which appears to rotate around an imaginary axis because of Earth's rotation. Since the axis cuts the celestial sphere at celestial poles all the object seems to circle around the celestial poles.
Condition 1: The stars rise and set perpendicular to the horizon
The observer is at the equator
Condition 2: The stars circle the sky parallel to the horizon
The observer is at the Pole of the Earth
Condition 3: The celestial equator passes through the zenith
The observer is at the equator
Condition 4: In the course of a year, all stars are visible
The observer is at the equator
Condition 5: The Sun rises on March 21 and does not set until September 21 (ideally)
The observer is at North Pole
Average speed is worked out from dividing distance by time.
1- You should always have a question for your experiment.
2- You need to conduct background research. It helps to write down your sources so you can cite your references.
3- Propose a hypothesis (educated guess on what you believe the outcome of the experiment will be)
4- Design and perform an experiment to test your hypothesis (include independent and dependent variable)
5- Record observations and analyze what the data means.
6- Conclude whether you need to accept or reject your hypothesis, which accepting means your hypothesis was right and rejected is if it was wrong.
If you mark off a beginning time and ending time on the graph,
then the area under the part of the graph between those limits
is the distance covered during that period of time.