1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bess [88]
3 years ago
7

What is -0.000000698 in scientific notation

Physics
1 answer:
dangina [55]3 years ago
6 0

-6.98 × 10-^7 is the answer <3

You might be interested in
A car is traveling at 50 mi/h when the brakes are fully applied, producing a constant deceleration of 38 ft/s2. what is the dist
e-lub [12.9K]

Convert 38 ft/s^2 to mi/h^2. Then we se the conversion factor > 1 mile = 5280 feet and 1 hour = 3600 seconds.

So now we show it > 38  \frac{ft}{s^2}  x  \frac{1mi}{5280ft} x  \frac{(3600s)^2}{(1h)^2} = 93272.27  \frac{mi}{h^2}

Then we have to use the formula of constant acceleration to determine the distance traveled by the car before it ended up stopping.

Which the formula for constant acceleration would be > v_2^2=v_1^2 + 2as

The initial velocity is 50mi/h (v_1=50)

When it stops the final velocity is (v_2=0)

Since the given is deceleration it means the number we had gotten earlier would be a negative so a = -93272.27

Then we substitute the values in....

0^2 = 50^2 + 2(-93272.27)s&#10;&#10;0 = 2500 - 186544.54s&#10;&#10;Isolate S next.&#10;&#10;185644.54s= 2500&#10;&#10;s =  2500/(185644.54)&#10;&#10;s=0.0134&#10;

So we can say the car stopped at 0.0134 miles before it came to a stop but to express the distance traveled in feet we need to use the conversion factor of 1 mile = 5280 feet in otherwards > 0.0134 mi *  \frac{5280ft}{1mi}  = 70.8 ft
So this means that the car traveled in feet 70.8 ft before it came to a stop.

4 0
3 years ago
A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arr
Paha777 [63]

Answer:

The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.

Determine Fx."

F_{x}=-1N.m

Explanation:

We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.

torque=cross product of force and position . mathematically this can be express as

T=r*F

Where

F=F_{x}i+(7N)j-(5N)k  and the position vector

r=(2m)i-(3m)j+(2m)k

using the determinant method to expand the cross product in order to determine the torque we have

\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\

by expanding we arrive at

T=(18-14)i-(-12-2F_{x})j+(12+3F_{x})k\\T=4i-(-12-2F_{x})j+(12+3F_{x})k\\\\

since we have determine the vector value of the toque, we now compare with the torque value given in the question

(4Nm)i+(10Nm)j+(11Nm)k=4i-(-12-2F_{x})j+(12+3F_{x})k\\

if we directly compare the j coordinate we have

10=-(-12-2F_{x})\\10=12+2F_{x}\\ 10-12=2F_{x}\\ F_{x}=-1N.m

8 0
3 years ago
The noise floor, also known as additive white Gaussian noise (AWGN), is a continuous noise level that appears over a wide spectr
harkovskaia [24]

Answer:

correct option is a. True

Explanation:

solution

the noise floor is AWGN ( additive white Gaussian noise )  

and when viewed in the frequency domain, it is the continuous noise level  

because as they have a  uniform power over all the frequency.

 

so that it is additive white Gaussian noise  

as we can say given statement is True  

correct option a true  

4 0
3 years ago
A common flashlight bulb is rated at 0.32 A and 4.3 V (the values of the current and voltage under operating conditions). If the
sleet_krkn [62]

Answer:

1176.01 °C

Explanation:

Using Ohm's law,

V = IR................. Equation 1

Where V = Voltage, I = current, R = Resistance when the bulb is on

make R the subject of the equation

R = V/I.................. Equation 2

R = 4.3/0.32

R = 13.4375 Ω

Using

R = R'(1+αΔθ)............................. Equation 3

Where R' = Resistance of the bulb at 20°, α = Temperature coefficient of resistivity, Δθ = change in temperature

make Δθ the subject of the equation

Δθ = (R-R')/αR'.................. Equation 4

Given: R = 13.4375 Ω, R' = 1.6 Ω, α = 6.4×10⁻³ K⁻¹

Substitute into equation 4

Δθ = (13.4375-1.6)/(1.6×0.0064)

Δθ = 11.8375/0.01024

Δθ = 1156.01 °C

But,

Δθ = T₂-T₁

T₂ = T₁+Δθ

Where T₂ and T₁ = Final and initial temperature respectively.

T₂ = 20+1156.01

T₂ = 1176.01 °C

5 0
3 years ago
Read 2 more answers
1. Which statement is true about natural
lara [203]

Answer:

1. D. They can be a substance, material, object or  source of energy.

2. B. The properties will be different.

3. C. When two reactants form one product, the  reaction is spontaneous.

4 0
3 years ago
Other questions:
  • What type of silicate mineral is olivine?
    12·2 answers
  • A red car and a blue car can move along the same straight one-lane road. Both cars can move only at one speed when they move (e.
    9·1 answer
  • When the distance between two charges is halved, the electrical force between them?
    8·1 answer
  • Real world trampolines lose energy since they are damped springs with much internal friction. How much energy does the sumo wres
    15·1 answer
  • . Solve the following problem using analytical techniques: Suppose you walk 18.0 m straight west and then 25.0 m straight north.
    7·1 answer
  • 8th grade science question on forces, please help me im soooo close and i dont understand this one :)
    13·2 answers
  • A long solenoid has 103 turns/cm and carries current i. An electron moves within the solenoid in a circle of radius 2.60 cm perp
    14·1 answer
  • Draw the net force arrow on the picture to the left.
    11·1 answer
  • When a 5.0 kg box is hung from a spring, the spring stretches to 50 mm beyond its relaxed length. (a) In an elevator acceleratin
    14·1 answer
  • Two objects of masses m1 = 0.56 kg and m2 = 0.88 kg are placed on a horizontal
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!