1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
siniylev [52]
3 years ago
6

Use Newton's laws to explain why a falling object dropped from a 57m tower accelerates initially but then reaches constant veloc

ity. Discuss the forces acting on the object
Physics
1 answer:
snow_lady [41]3 years ago
5 0

Answer:

At the point of dropping the object, by Newton's first law due to gravitational force F_g = m × g, accelerates

By Newton's Second law the object reaches impacts on the air with the gravitational force resulting in changing momentum of m×(Final Velocity - Initial Velocity)

As the velocity increases, the rate of change of momentum becomes equivalent to the gravitational force and by Newton's third law, the action action and reaction are equal and opposite hence they cancel each other out

The body then moves at a constant uniform motion down according to Newton's first law

Explanation:

At the point the object of mass, m, is dropped from the height of the tower, the only force acting on the object is the gravitational force such that the object has an acceleration which is the acceleration due to gravity, g, and the gravitational force is therefore = m × g

As the speed of the object increases while the object is falling with the gravitational acceleration the rate at which the object cuts through layers of air which (by Newton's first law of motion, are at rest ) has some buoyancy effect also increases therefore, the object is constantly increasingly changing the momentum of the air which by Newton's second law results, at an high enough velocity, and by Newton's third law, in a force equal to the applied gravitational force

Therefore, the force of the air drag becomes equal to the gravitational force, cancelling each other out and the object then moves according to Newton;s first law, in uniform motion of a constant speed while still falling down.

You might be interested in
Compute the final velocity of a ski jumper just as he leaves the ramp if he has a mass of 60 kg and the tower is 70 meters high?
SpyIntel [72]
According to galilo in the absence of air resistance fraction then the body mass 60kg and 40kg will reach the earth surface at the same time....
5 0
3 years ago
George rides his bike to his friend’s house that is 5 kilometers from his house. If he rides his bike at an average speed of 15
oksano4ka [1.4K]
I haven’t learned math in forever sorry
7 0
3 years ago
What type of wave does NOT need matter to carry energy? *
Blababa [14]

Answer:

I guess sound wave I s gonna be d right answer

Explanation:

cos sound doesnt has weight and occupies space

3 0
4 years ago
The aorta is approximately 25 mm in diameter. The mean pressure there is about 100 mmHg and the blood flows through the aorta at
Ksenya-84 [330]

Answer:

Explanation:

25 mm diameter

r₁  = 12.5 x 10⁻³ m radius.

cross sectional area =  a₁

Pressure P₁  = 100 x 10⁻³ x 13.6 x 9.8 Pa

a )

velocity of blood v₁ = .6 m /s

Cross sectional area at blockade = 3/4 a₁

Velocity at blockade area = v₂

As liquid is in-compressible

a₁v₁ = a₂v₂

a₁ x .6 m /s  = 3/4 a₁ v₂

v₂ = .8m/s

b )

Applying Bernauli's theorem formula

P₁ + 1/2 ρv₁² =  P₂ +  1/2 ρv₂²

100 x 10⁻³ x 13.6 x10³x 9.8 + 1/2 X 1060 x .6² = P₂ +  1/2x 1060 x .8²

13328 +190.8 = P₂ + 339.2

P₂ = 13179.6 Pa

= 13179 / 13.6 x 10³ x 9.8 m of Hg

P₂ =  .09888 m of Hg

98.88 mm of Hg

8 0
4 years ago
A string with a mass density of 3 * 10^-3 kg/m is under a tension of 380 N and is fixed at both ends. One of its resonance frequ
Delvig [45]

Answer:

(a) the fundamental frequency of this string is 65 Hz

(b) the harmonics of the given frequencies are third and fourth respectively.

(c) the length of the string is 2.74 m

Explanation:

Given;

mass density of the string, μ = 3 x 10⁻³ kg/m

tension of the string, T = 380 N

resonating frequencies, 195 Hz and 260 N

For the given resonant frequencies;

195 = \frac{n}{2l} \sqrt{\frac{T}{\mu} } ---(1)\\\\260 = \frac{n+1}{2l} \sqrt{\frac{T}{\mu} } ---(2)\\\\divide \ (2) \ by (1)\\\\\frac{260}{195} = \frac{n+1 }{n} \\\\260n = 195(n+1)\\\\260 n = 195 n + 195\\\\260n - 195n = 195\\\\65n = 195\\\\n = \frac{195}{65} \\\\n = 3

(c) From any of the equations, solve for Length of the string (L);

195 = \frac{n}{2l} \sqrt{\frac{T}{\mu} } \\\\195 = \frac{3}{2l}\sqrt{\frac{380}{3\times 10^{-3}} } \\\\l = \frac{3}{2\times 195}\sqrt{\frac{380}{3\times 10^{-3}} }\\\\l = 2.74 \ m

(a) the fundamental frequency is calculated as;

f_o = \frac{1}{2l} \sqrt{\frac{T}{\mu} } \\\\f_o = \frac{1}{2\times 2.74} \sqrt{\frac{380}{3\times 10^{-3} } }\\\\f_o =  65 \ Hz

(b) harmonics of the given frequencies;

the first harmonic (n = 1) = f₀ = 65 Hz

the second harmonic (n = 2) = 2f₀ = 130 Hz

the third harmonic (n = 3) = 3f₀ = 195 Hz

the fourth harmonic (n = 4) = 4f₀ = 260 Hz

Thus, the harmonics of the given frequencies are third and fourth respectively.

7 0
3 years ago
Other questions:
  • Janessa got through high school easily because she could remember what her teachers said in class and their tests never covered
    12·1 answer
  • What is a membrane-covered structure that contains all the materials for life
    12·1 answer
  • Could a mixture be made up of only elements ?
    10·1 answer
  • Convert 100°c into farreinheit​
    7·2 answers
  • Which words identify the scientific parts of a wave? Check all that apply.
    8·1 answer
  • How many grams of NO2 are in 3 moles of a nitrogen dioxide???<br>90.2g<br>138.2g<br>160g<br>0.07g​
    14·1 answer
  • What does the word composed mean
    6·2 answers
  • Which component of weight is cause for S.H.M of bob simple pendulum
    15·1 answer
  • a proton is in a box of width L. what must the width of the box be for the ground level energy to be 5.0 MeV, a typical value fo
    6·1 answer
  • Where in space did the expansion of the universe begin?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!