An electron that is far away from the nucleus have higher energy than an electron near the nucleus. Nucleus are positively charged and those electrons near it get attracted; those electrons gain kinetic energy hence reducing their internal energy. The electrons far from nucleus have low kinetic energy hence more internal energy.
Work-Energy :W = 1/2 m ( Vf^2 -Vo^2 )
Vo = 24.0 m/s Initial speed
Vf = 27.5 m/s Final speed
W = 1/2 m ( Vf^2 -Vo^2 )
160 kj = 1/ 2 m ( 27.5^2 -24.0 ^2)
160kj = 4680 x m
convert kilo joules to jeoules 160000 j = 4689 xm
m = 160000 j/4689
m = 34.18 kg
Answer:
5 meters per second
Explanation:
5m is the distance
5m west is the vector
5m per second is the velocity
5m per second west is unknown
To develop the problem it is necessary to apply the kinematic equations for the description of the position, speed and acceleration.
In turn, we will resort to the application of Newton's second law.
PART A) For the first part we look for the time, in a constant acceleration, knowing the speeds and the displacement therefore we know that,

Where,
X = Desplazamiento
V = Velocity
t = Time
In this case there is no initial displacement or initial velocity, therefore

Clearing for time,



PART B) This is a question about the impulse of bodies, where we turn to Newton's second law, because:
F = ma
Where,
m=mass
a = acceleration
Acceleration can also be written as,

Then





Negative symbol is because the force is opposite of the direction of moton.
PART C) Acceleration through kinematics equation is defined as




The gravity is equal to 0.8, then the acceleration is

