Explanation:
As a tornado or other storm system passes over a building, low pressure can tug a roof upward. When those forces surpass the force exerted by the weight of the roof, the structure flies up and is swept away by wind currents..
Answer:
the moment of inertia of the merry go round is 38.04 kg.m²
Explanation:
We are given;
Initial angular velocity; ω_1 = 37 rpm
Final angular velocity; ω_2 = 19 rpm
mass of child; m = 15.5 kg
distance from the centre; r = 1.55 m
Now, let the moment of inertia of the merry go round be I.
Using the principle of conservation of angular momentum, we have;
I_1 = I_2
Thus,
Iω_1 = I'ω_2
where I' is the moment of inertia of the merry go round and child which is given as I' = mr²
Thus,
I x 37 = ( I + mr²)19
37I = ( I + (15.5 x 1.55²))19
37I = 19I + 684.7125
37I - 19 I = 684.7125
18I = 684.7125
I = 684.7125/18
I = 38.04 kg.m²
Thus, the moment of inertia of the merry go round is 38.04 kg.m²
Radioactive decay in the core releases energy. When the sun matter is heated it reduced in density and rises to the surface of the sun, meaning the energy is transferred to the surface.
<em><u>D. acceleration Hope this helps!</u></em>
The answer is 45 degrees. I am not doing a field experiment for you that involves a cannon and a day's work, for 5 points.