Answer:
a)
1.35 kg
b)
2.67 ms⁻¹
Explanation:
a)
= mass of first body = 2.7 kg
= mass of second body = ?
= initial velocity of the first body before collision = 
= initial velocity of the second body before collision = 0 m/s
= final velocity of the first body after collision =
using conservation of momentum equation

Using conservation of kinetic energy

b)
= mass of first body = 2.7 kg
= mass of second body = 1.35 kg
= initial velocity of the first body before collision = 4 ms⁻¹
= initial velocity of the second body before collision = 0 m/s
Speed of the center of mass of two-body system is given as
ms⁻¹
Answer:
both
Explanation:
and I'm serious he is literally both
Answer:
a) <em>8.33 x 10^-6 Pa</em>
b) <em>8.23 x 10^-11 atm</em>
c) <em>1.67 x 10^-5 Pa</em>
d) <em>1.65 x 10^-10 atm</em>
<em></em>
Explanation:
Intensity of the light
= 2500 W/m^2
speed of light
<u> </u>= 3 x 10^8 m/s
a) we know that the pressure for for a totally absorbing surface is given as
=
= 2500/(3 x 10^8) = <em>8.33 x 10^-6 Pa</em>
b) 1 atm = 101325 Pa
= (8.33 x 10^-6)/101325 = <em>8.23 x 10^-11 atm</em>
c) for a totally reflecting surface
=
= twice the value for totally absorbing
= 2 x 8.33 x 10^-6 = <em>1.67 x 10^-5 Pa</em>
d) 1 atm = 101325 Pa
= 2 x 8.23 x 10^-11 = <em>1.65 x 10^-10 atm</em>