I think it is electron. Electrons are located outside of the nucleus
The time elapsed since you stopped the stopwatch is 0.41 s.
<em>Your question is not complete, it seems to be missing the following information;</em>
"The velocity of the ant is 2 m/s"
The given parameters;
- velocity of the ant, v = 2 m/s
- change in position of the ant, Δx = 0.81 m
- time when the ant was noticed, = t₂
Velocity is defined as the change in displacement per change in time of motion of an object.

The time elapsed since you stopped the stopwatch is calculated as;

Thus, the time elapsed since you stopped the stopwatch is 0.41 s.
Learn more here: brainly.com/question/18153640
Answer:
The ball would hit the floor approximately
after leaving the table.
The ball would travel approximately
horizontally after leaving the table.
(Assumption:
.)
Explanation:
Let
denote the change to the height of the ball. Let
denote the time (in seconds) it took for the ball to hit the floor after leaving the table. Let
denote the initial vertical velocity of this ball.
If the air resistance on this ball is indeed negligible:
.
The ball was initially travelling horizontally. In other words, before leaving the table, the vertical velocity of the ball was
.
The height of the table was
. Therefore, after hitting the floor, the ball would be
below where it was before leaving the table. Hence,
.
The equation becomes:
.
Solve for
:
.
In other words, it would take approximately
for the ball to hit the floor after leaving the table.
Since the air resistance on the ball is negligible, the horizontal velocity of this ball would be constant (at
) until the ball hits the floor.
The ball was in the air for approximately
and would have travelled approximately
horizontally during the flight.
Answer:
d = 142.5 m
Explanation:
This is a vector exercise. Let's calculate how much the boat travels in the 40s
d₀ =
t
d₀ = 0.75 40
d₀ = 30 m
Let's write the kinematic equations
Boat
x = d₀ +
t
x = 0 +
t
At the meeting point the coordinate is the same for both
d₀ +
t =
t
t (
-
) = d₀
t = d₀ / (
-
)
The two go in the same direction therefore the speeds have the same sign
t = 30 / (0.95-0.775)
t = 150 s
The distance traveled by man is
d =
t
d = 0.95 150
d = 142.5 m
<span>Radius distance from origin to particle = √ (2²+1²) = √5 m = R
I = MR² = (0.200)(5) = 1.00 kg-m²
Θ = arctan 2/1 = 63.4° = R's angle CCW from horizontal
V = 3.0 m/s
V component that is at 90° to R = 3.0(sin 90°- 63.4°) = 3.0(sin 26.6°) = 1.3433 m/s
w = [V component / R] = 1.3433/√5 = 0.601 rad/s
size of angular momentum of particle relative to origin = Iw = (1.00)(0.601) = 0.601 kgm²/s</span><span>
i hope I'm right</span>