You can do it I believe in you
Answer:
Explanation: Speed = Wavelength x Wave Frequency. In this equation, wavelength is measured in meters and frequency is measured in hertz (Hz), .
Answer:
time constant will decrease and steady state current will decrease on increasing the resistance
Explanation:
As we know that the EMF of cell is E which is used to connected across a resistor and an inductor.
So we will have

here we know that

now here we have

so if we increase the value of resistance of the wire then the time constant will decrease
and hence it will take less time to reach near the steady state value
also the steady state current will be smaller in that case
Answer:
a) velocity v = 322.5m/s
b) time t = 19.27s
Explanation:
Note that;
ads = vdv
where
a is acceleration
s is distance
v is velocity
Given;
a = 6 + 0.02s
so,

Remember that
![v = \frac{ds}{dt} \\\frac{ds}{v} = dt\\\int\limits^s_0 {\frac{ds}{\sqrt{12s+0.02s^{2} } } } \, ds = \int\limits^t_0 {} \, dt \\t= (5\sqrt{2} ) ln \frac{| [s + 300 + \sqrt{(s^{2} + 600s)} ] |}{300} .......2](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bds%7D%7Bdt%7D%20%5C%5C%5Cfrac%7Bds%7D%7Bv%7D%20%3D%20dt%5C%5C%5Cint%5Climits%5Es_0%20%7B%5Cfrac%7Bds%7D%7B%5Csqrt%7B12s%2B0.02s%5E%7B2%7D%20%7D%20%7D%20%7D%20%5C%2C%20ds%20%3D%20%5Cint%5Climits%5Et_0%20%7B%7D%20%5C%2C%20dt%20%5C%5Ct%3D%20%20%285%5Csqrt%7B2%7D%20%29%20ln%20%20%5Cfrac%7B%7C%20%5Bs%20%2B%20300%20%2B%20%5Csqrt%7B%28s%5E%7B2%7D%20%20%2B%20600s%29%7D%20%5D%20%7C%7D%7B300%7D%20.......2)
substituting s = 2km =2000m, into equation 1
v = 322.5m/s
substituting s = 2000m into equation 2
t = 19.27s