Answer:
Energy required = 3169.34 Joules.
Explanation:
The quantity of energy (Q) required can be determined by;
Q = mcΔθ
Where: m is the mass, c is the specific heat and Δθ is the change in temperature.
But, m = 96.7 kg, c = 0.874 J/(kg
),
=
and
=
.
So that,
Q = mc(
-
)
= 96.7 x 0.874 x (
-
)
= 96.7 x 0.874 x 37.5
= 3169.3425
Q = 3169.34
= 3.2 KJ
The amount of energy required is 3169.34 Joules.
Answer:
350Joules
Explanation:
According to law of Conservation of energy, the amount of energy at the used up at the start is equal to that at the end.
The initial energy used up is gravitational potential energy
Final energy at the lowest point is kinetic energy.
If the energy is conserved then it means energy is not used up during the process hence;
Initial Potential energy = Final kinetic energy
If the gravitational potential energy is 350Joules then her final kinetic energy at the lowest point will also be 350Joules
Emf e = 11
r 1 = 3.0
r 2 = 3.0
r 3 = ?
The two in parallel are equivalent to 3 • 3/6 = 1.5 Ω
To have 2.4 volts across them, the current is I = 2.4/1.5 = 1.6 amps. and the unknown R = (11–2.4) / 1.6 = 5.375 Ω or 5.4 Ω
To solve this problem it is necessary to apply the concewptos related to Torque, kinetic movement and Newton's second Law.
By definition Newton's second law is described as
F= ma
Where,
m= mass
a = Acceleration
Part A) According to the information (and as can be seen in the attached graph) a sum of forces is carried out in mass B, it is obtained that,


In the case of mass A,


Making summation of Torques in the Pulley we have to



Replacing the values previously found,





Replacing with our values


PART B) Ignoring the moment of inertia the acceleration would be given by



Therefore the error would be,


