Answer:
In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion
In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies
Answer:
With the addition of the pipe we have a greater torque.
Explanation:
We need to complete the description of the problem, searchin in internet we have:
"Sometimes, even with a wrench, one cannot loosen a nut that is frozen tightly to a bolt. It is often possible to loosen the nut by slipping one end of a long pipe over the wrench handle and pushing at the other end of the pipe. With the aid of the pipe, does the applied force produce a smaller torque, a greater torque, or the same torque on the nut?"
With the addition of the pipe we have a greater torque, as it increases the distance or radius of torque.
We know that torque is defined, as the product of force by distance, in this way we have:
T = F * d
where:
T = torque [N*m]
F = force [N]
d = distance [m]
We can see in the above equation, that increasing the distance increases torque proportionally.
Answer:
r=6.05km/hr
z=59.1 degree to the horizontal
Explanation:
A bird is flying east at 5.2 kilometers/hour relative to the air. There's a crosswind blowing at 3.1 kilometers/hour toward the south relative to the ground. What is the bird's velocity relative to the ground? State your answer to one decimal place
can be solved using pythagoras theorem
r^2=o^2+a^2
r^2=5.2^2+3.1^2
r^2=36.65
r=6.1km/hr is te birds velocity relative to the ground
tanz=5.2/3.1
z=tan^-1(5,2/3.1)
z=59.1 degree to the horizontal
Answer:
La rapidez con que el fármaco es absorbido en el torrente sanguíneo depende, en parte, del suministro de sangre al músculo: cuanto menor sea el aporte de sangre, más tiempo necesitará el fármaco para ser absorbido.
Para la administración por vía intravenosa se inserta una aguja directamente en una vena
Explanation: