-- Momentum is (mass) x (speed).
Object B has 1.5 times as much momentum as Object A has.
-- Kinetic energy is (1/2) x (mass) x (speed) .
Object B has 1.5 times as much kinetic energy as Object A has.
-- If they would both stop long enough to get on the scale,
Object B would weigh 1.5 times as much as Object A does.
Statements 1, 3, and 5 are true.
(A, C, and E)
Answer:
553.1m
Explanation:
When an object moves at constant velocity we can express this movement like V=x/t, where V is the velocity, x is the displacement and t is the time spent on it.
In that way, the expression x=V.t give us the displacement from t=0s until t=51s, but we have to sum the initial distance from the point A.
x=242m +V.t = 242m + (6.1m/s x 51s) = 553.1m
Answer:
Total kinetic energy of entire system is 3 mgl
Explanation:
Given two masses: m and 4m.
Since the pulley is frictionless and the thread is massless, the energy here is linked to the two masses.
Total kinetic energy of entire system = decrease in gravitational potential energy of the system.
Therefore, we have :
ΔKE = Δp
ΔKE = 4mgl - mgl
= 3 mgl
Total kinetic energy of entire system is 3 mgl
The period of the pendulum is given by the following equation
T = 2π * sqrt (L/g)
Where g is the gravity (free fall acceleration)
L is the longitude of the pendulum
T is the period.
We find g.............> (T /2π)^2 = L/g
g = L/(T /2π)^2...........> g = 22.657 m/s^2