All matter is made of tiny particles called atoms, molecules and ions; the tiny particles in solids are tightly packed and can only vibrate. The particles in liquids also vibrate but are able to move around by rolling over each other and sliding around. In gases, the particles move freely with rapid, random motion.
Answer:
Q = 2640.96 J
Explanation:
Given data:
Mass of He gas = 10.7 g
Initial temperature = 22.1°C
Final temperature = 39.4°C
Heat absorbed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree. Specific heat capacity of He is 14.267 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 39.4°C - 22.1°C
ΔT = 17.3°C
Q = 10.7 g× 14.267 J/g.°C × 17.3°C
Q = 2640.96 J
Physical Properties<span>: </span>Physical properties<span> can be observed or measured without changing the composition of matter. </span>Physical properties<span> are used to observe and describe matter. so physical changes are the change in temperature of the land and the evaporation of water and change humidity of the air. chemical change is the ripening of the orange</span>
Answer:
The three major types of intermolecular interactions are dipole–dipole interactions, London dispersion forces (these two are often referred to collectively as van der Waals forces), and hydrogen bonds.
Answer:
In the respiratory system, oxygen is breathed in and carbon dioxide ( a green house gas) is breathed out.