1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elden [556K]
3 years ago
6

What units is length in

Physics
2 answers:
Shalnov [3]3 years ago
8 0
Some units of length are: meters, centimeters, kilometers, etc...
ankoles [38]3 years ago
6 0
Sisteme International recognises only meters.
In physics calculations we use only meters.

However, there are also multimeters, kilometres, ft, miles
You might be interested in
How can scientists study the inner structure of an atom?
Arturiano [62]
A microscope is one way
8 0
3 years ago
A 52 kg and a 95 kg skydiver jump from an airplane at an altitude of 4750 m, both falling in the pike position. Assume all value
Scilla [17]

Answer: 52 kg skydiver: 9.09 m/s and 522.55 s

              95 kg skydiver: 12.3 m/s and 386.2 s

Explanation: <u>Drag</u> <u>Force</u> is an opposite force when an object is moving in a fluid.

For skydivers, when falling through the air, the forces acting on it are gravitational and drag forces. At a certain point, drag force equals gravitational force, which is constant on any part of the planet, producing a net force that is zero. Since there is no net force, there is no acceleration and, consequently, velocity is constant. When that happens, the person reached the <u>Terminal</u> <u>Velocity</u>.

Drag Force and Velocity are proportional to the squared speed. So, terminal velocity is given by:

F_{G}=F_{D}

mg=\frac{1}{2}C \rho Av_{T}^{2}

v_{T}=\sqrt{\frac{2mg}{\rho CA} }

where

m is mass in kg

g is acceleration due to gravitational force in m/s²

ρ is density of the fluid in kg/m³

C is drag coefficient

A is area of the object in the fluid in m²

Calculating:

The 52kg skydiver has terminal velocity of:

v_{T}=\sqrt{\frac{2(52)(9.8)}{(1.21)(0.7)(0.14)} }

v_{T}= 9.09

The 95kg skydiver's terminal velocity is

v_{T}=\sqrt{\frac{2(95)(9.8)}{(1.21)(0.7)(0.14)} }

v_{T}= 12.3

The 52 kg and 95kg skydivers' terminal velocity are 9.09m/s and 12.3m/s, respectively.

The time each one will reach the floor will be:

52 kg at 9.09 m/s:

t=\frac{4750}{9.09}

t = 522.5

95 kg at 12.3 m/s:

t=\frac{4750}{12.3}

t = 386.2

The 52 kg and 95kg skydivers' time to reach the floor are 522.5 s and 386.2 s, respectively.

3 0
3 years ago
Water is flowing in a pipe with a circular cross section but with varying cross-sectional area, and at all points the water comp
slamgirl [31]

(a) 5.66 m/s

The flow rate of the water in the pipe is given by

Q=Av

where

Q is the flow rate

A is the cross-sectional area of the pipe

v is the speed of the water

Here we have

Q=1.20 m^3/s

the radius of the pipe is

r = 0.260 m

So the cross-sectional area is

A=\pi r^2 = \pi (0.260 m)^2=0.212 m^2

So we can re-arrange the equation to find the speed of the water:

v=\frac{Q}{A}=\frac{1.20 m^3/s}{0.212 m^2}=5.66 m/s

(b) 0.326 m

The flow rate along the pipe is conserved, so we can write:

Q_1 = Q_2\\A_1 v_1 = A_2 v_2

where we have

A_1 = 0.212 m^2\\v_1 = 5.66 m/s\\v_2 = 3.60 m/s

and where A_2 is the cross-sectional area of the pipe at the second point.

Solving for A2,

A_2 = \frac{A_1 v_1}{v_2}=\frac{(0.212 m^2)(5.66 m/s)}{3.60 m/s}=0.333 m^2

And finally we can find the radius of the pipe at that point:

A_2 = \pi r_2^2\\r_2 = \sqrt{\frac{A_2}{\pi}}=\sqrt{\frac{0.333 m^2}{\pi}}=0.326 m

6 0
3 years ago
In the equation F = Kq1 q2/r2 solve for q2. Solve for r.
Tpy6a [65]

Answer:

r = √(k q₁ q₂ / F)

Explanation:

F = k q₁ q₂ / r²

Multiply both sides by r²:

F r² = k q₁ q₂

Divide both sides by F:

r² = k q₁ q₂ / F

Take the square root of both sides:

r = √(k q₁ q₂ / F)

3 0
3 years ago
8. When you see a stopped local bus (1 point)
elena55 [62]

Answer: be alert for pedestrians near the bus.

Explanation: Due to road accidents many Governments around the world has adopted and put in place certain rules and regulations with regards to road safety, this is so to prevent the or reduce the chances of accidents happening.

Road safety rules are rules and guidelines put in place by Government in order to prevent road accidents and maintain a free flow of traffic. An example of such rules is 'be alert for pedestrians near the bus ' when approaching a local bus that is stopped.

5 0
3 years ago
Other questions:
  • Who expressed particles by wave equations?
    13·1 answer
  • A quantum of electromagnetic radiation has an energy of 2.0 kev. what is its frequency? planck's constant is 6.63 × 10−34 j · s.
    12·1 answer
  • What is the relationship between the mass, velocity, and momentum of an object?
    8·2 answers
  • What are the thee major wind systems
    14·1 answer
  • 3.Cuanto Calor pierden 514 ml de agua si su temperatura desciende de 12°C a 11°C. Expresa el resultado en calorias.
    11·1 answer
  • 3. A train has broken through the wall of a train station. During the collision, what can be said about the force exerted by the
    15·1 answer
  • Which pair of elements is most similar?<br> Na and CI<br> Li and Ne<br> Co and<br> Ne and Ar
    5·1 answer
  • The complete combustion of a small wooden match produces approximately 512 cal of heat. How many kilojoules are produced? Expres
    6·1 answer
  • If a 12 V battery is connected to a light bulb with a resistance of 2 ohms, how much current will flow through the light bulb?
    15·1 answer
  • Newton's 1st law of motion States that
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!