Question:
A 63.0 kg sprinter starts a race with an acceleration of 4.20m/s square. What is the net external force on him? If the sprinter from the previous problem accelerates at that rate for 20m, and then maintains that velocity for the remainder for the 100-m dash, what will be his time for the race?
Answer:
Time for the race will be t = 9.26 s
Explanation:
Given data:
As the sprinter starts the race so initial velocity = v₁ = 0
Distance = s₁ = 20 m
Acceleration = a = 4.20 ms⁻²
Distance = s₂ = 100 m
We first need to find the final velocity (v₂) of sprinter at the end of the first 20 meters.
Using 3rd equation of motion
(v₂)² - (v₁)² = 2as₁ = 2(4.2)(20)
v₂ = 12.96 ms⁻¹
Time for 20 m distance = t₁ = (v₂ - v ₁)/a
t₁ = 12.96/4.2 = 3.09 s
He ran the rest of the race at this velocity (12.96 m/s). Since has had already covered 20 meters, he has to cover 80 meters more to complete the 100 meter dash. So the time required to cover the 80 meters will be
Time for 100 m distance = t₂ = s₂/v₂
t₂ = 80/12.96 = 6.17 s
Total time = T = t₁ + t₂ = 3.09 + 6.17 = 9.26 s
T = 9.26 s
<span>the speed of a direction</span>
Answer:
15
Explanation:
mass, M = 5Kg
horizontal force, F_h = 40N
acceleration, a =5 m/s^2
frictional force, F_f =?
net force = ma
net force = F_h - F_f = 40N - F_f
40 - F_f = 5 x 5
- F_f = 25 - 40
multiply both side by -1
F_f = 40 - 25 = 15
the frictional force is 15N
Answer:
The frequency of the coil is 7.07 Hz
Explanation:
Given;
number of turns of the coil, 200 turn
cross sectional area of the coil, A = 300 cm² = 0.03 m²
magnitude of the magnetic field, B = 30 mT = 0.03 T
Maximum value of the induced emf, E = 8 V
The maximum induced emf in the coil is given by;
E = NBAω
Where;
ω is angular frequency = 2πf
E = NBA(2πf)
f = E / 2πNBA
f = (8) / (2π x 200 x 0.03 x 0.03)
f = 7.07 Hz
Therefore, the frequency of the coil is 7.07 Hz
The distance from the Earth to the Sun is 92.96 million mi.