Answer:
10 km/hr/s
Explanation:
The acceleration of an object is given by

where
v is the final velocity
u is the initial velocity
t is the time
For the car in this problem:
u = 0

t = 6 s
Substituting in the equation,

They can either cancel each other or add up to a resultant force with a certain direction and modulus.
Newton's second law states that F=m*a, where F is the resultant force, ie ΣF.
Answer:

Explanation:
Initial potential energy of the given spacecraft is given as

so we have

so we have






now total work done to move it to infinite is given
W = 0 - U

Answer:
78 km/h
Explanation:
If I normally drive a 12 hour trip at an average speed of 100 km/h, my destination has a total distance of:
- 100 km/h · 12 h = 1,200 km
Today, I drive the first 2/3 of the distance at 116 km/h. Let's first calculate what 2/3 of the normal distance is.
I've driven 800 km already. I need to drive 400 km more to reach my final destination. I need to figure out my average speed during this last 1/3 of the distance.
To do this, I first need to calculate how much time I spent driving 116 km/h for the past 800 km.
- 116 km/1 h = 800 km/? h
- 800 = 116 · ?
- ? = 800/116
- ? = 6.89655172
I spent 6.89655172 hours driving during the first 2/3 of the distance.
Now, I need to subtract this value from 12 hours to find the remaining time I have left.
- 12 h - 6.89655172 h = 5.10344828 h
Using this remaining time and my remaining distance, I can calculate my average speed.
- ? km/1 hr = 400 km/5.10344828 h
- 5.10344828 · ? = 400
- ? = 400/5.10344828
- ? = 78.3783783148
My average speed during the last third of the distance is around 78 km/h.